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Introduction

This handbook is divided into two parts (l) Wellhead
Protection Area (WHPA) Delineation, and (ll) Implemen-
tation of Wellhead Protection Areas Figure I-1 shows
how Part | 1s organmized Chapter 1 provides a general
introduction to fundamentals of contaminant hydrogeol-
ogy, followed by Chapters 2 (Potentiometric Maps) and
3 (Measurements and Estimation of Aquifer Parameters
for Flow Equations) which cover essential hydrogeologic
concepts for WHPA delineation The last three chapters
in Part | cover specific WHPA delineation methods sim-
ple geometric and analytical methods (Chapter 4), hy-
drogeologic mapping (Chapter 5) and computer
modeling (Chapter 6).

Figure 1-2 shows how Part Il 1s orgamized Chapter 7
provides an overview of the major steps in developing a

3

Waellhead Protection Area (WHPA) Delineation

CHAPTER 1
Fundamentals of
Contaminant Hydrogeclogy

Essential Hydrogeologle Concepts for WHPA Delineation
l |

3
CHAPTER 2 Mesaurement and Estimation
Potentiometric Maps of Aquifer Parameters
for Flow Equations

IWHP/-\ Delineation Methods |

CHAPFTER 4 CHAFTERS CHAPTER 6
Simple Methods For Hydrogeologle Use of Computer
Mapping For Models for
Protection Arsas Welthead P k Welihead F
4.3 Gaomatric Methods 8.5 Vulnerabilty
Mapping
4.4 Analytical
Time of Travel 5.6 Karst Aquifers
4.5 Anadytical 57Uss cfGIS
Deawdown

Figure I-1. Gulde to Part I of this publication

wellhead protection program Chapters 8 (Contaminant
ldentification and Risk Assessment) and 9 (Wellhead
Protection Area Management) contain numerous tables,
checklists and worksheets for the steps that follow de-
lineation of wellhead protection areas (Part 1) Chapter
10 includes six case studies that illustrate delineation
methods and implementation approaches for a varety
of hydrogeologic settings

WHO SHOULD USE THIS HANDBOOK

Anyone responsible for delineating the boundaries of a
welthead protection area, identifying and evaluating po-
tential contaminants, and identifying wellhead manage-
ment options will find the handbook useful

Users Without Specialized Training in
Hydrogeology

Most of this handbook does not require specialized
training 1in hydrogeology Basic math skills, including
high school-level algebra, 1s required for understanding

CHAPTER7

Developing A Wellhead
Protection Program

Overview of Major Steps in Implementing
a Welihead Protection Program

\/f
PART | CHAPTER 8 CHAPTER 9
Woithead Comtaminant Wallhead
Protaction Area kientification Protection Area
Delination and Risk Management
Figure | 1) Assessmaent
CHAPTER 10
implemantetion
Case Studles

Figure I-2 Guide to Part Il of this publication



and using the equations in the handbock Chapter 1
(Fundamentals of Contaminant Hydrogeology), Section
2 1 (Fundamental Hydrogeologic Concepts) and Sec-
tion 3 1 (Hydrogeologic Parameters of Interest) provide
the necessary background in hydrogeology for interpret-
ing and using potentiometric maps (Chapter 2), estimat-
ing important aquifer parameters (Chapter 3), and using
simple methods for mapping wellhead protection areas
(Chapter 4)

Methods described in Chapters 5 (Hydrogeologic Map-
ping for Wellhead Protection) and 6 (Use of Computer
Models for Wellhead Protection) generally require some
special traning in hydrogeology and should be used
with great caution, if at all, by anyone without this train-

Ing

Users With Training in Hydrogeclogy

Users who have some training in hydrogeology but who
are less famihiar with hydrochemustry may find that
Chapter 1 gives a useful introduction to chemical as-
pects of ground water contamination and transport Sec-
tions 4.1 (Critenia for Delineation of Wellhead Protection
Areas) and 4 2 (Overview of Wellhead Protection De-
neatton Methods) are required reading for under-
standing the WHPA delineation process The purpose of
Chapters 5 (Hydrogeologic Mapping for Wellhead Pro-
tection) and 6 (Use of Computer Models for Wellhead
Protection) i1s to provide a comprehensive identification
of available methods and some guidance: on selection
of methods A detailed discussion of specific methods i1s
beyond the scope of this handbook, but major refer-
ences containing more detailed information are cited i
the text or identified at the end of each chapter in
reference index tables

RELATIONSHIP TO STATE GUIDANCE
DOCUMENTS

In the United States, methods for protection of ground
water and wellhead areas are in a creative period of
development both in the technical and policy arenas
There I1s no single “best” approach for all hydrogeologic
or socio-political settings

During the preparation of this handbook, all state ground
water and welthead protection programs were contacted
with a request for copies of any forms, worksheets, and
guidance documents that had been developed as of late
1992 for wellhead protection Most states responded
with matenals that were very helpful for the development
of this document This handbook represents a catalog
and synthesis of guidance documents developed by
U S EPA and approaches developed at the state level

However, procedures established by state wellhead pro-
tection programs should be the primary guide in estab-
hshing wellhead protection areas Departures from
state-established procedures based on information in
this handbook should first be approved by the appropri-
ate state authority

HOW TO OBTAIN OTHER DOCUMENTS
CITED IN THIS HANDBOOK

This handbook contains numerous references in which
additional or more detailed information can be obtained
about a topic Most chapters have a table just before the
reference section which provides an index of references
by topic Wherever possible, NTIS acquisition numbers
or other sources of government documents are provided
(National Technical Information Service, 5285 Port
Royal Road, Springfield, VA22161, 800/624-8301) EPA
documents available from other sources are indicated
by the following abbreviations

CERI US EPA, Center for Environmental Research
Information (CERI), 26 W Martin Luther King Drive,
Cincinnati, OH 45268, 513/569-7562

EPCRA Emergency Planning and Community Right-To-
Know Act (EPCRA) Information Hotline 800/535-0202

ODW U S8 EPA, Office of Drinking Water (WH-550), 401
M Street, SW, Washington, DC 20460, Safe Drinking
Water Hotline 800/426-4791

RIC RCRA Information Center, Office of Solid Waste
(OS-305), 401 M Street, SW, Washington, DC 20460,
RCRA/Superfund Hotline 800/424-9346






Chapter 1
Fundamentals of Contaminant Hydrogeology

This chapter provides a brief review of {undamental
concepts in contaminant hydrogeology Most methods
for delineation of wellhead protection areas (WHPAs)
use physical principles of ground water flow (Chapters
2 through 5) The purpose of wellhead protection, how-
ever, Is to prevent or mitigate ground water contamina-
tion This requires an understanding of (1) how ground
water becomes contaminated (Section 1 1), (2) basic
processes that affect the transport of contaminants in
ground water (Section 1 2), and (3) how the interaction
of physical and chemical processes defermine the
shape of contaminant plumes (Section 1 3) Section 1 4
discusses how contaminant plume behavior 1s affected
by geologic material properties, pH and Eh, leachate
composition, and source characteristics

1.1 General Mechanisms of Ground
Water Contamination

Contaminant releases to ground water can occur by
design, by accident, or through neglect Most ground
water contamination incidents involve substances re-
leased at or only shghtly below the land surface Conse-
quently, most contaminant releases affect shallow
ground water initially Certain activities, however, such
as oll and gas exploration, deep-well waste injection,
and pumping of ground water underlain by saltwater,
initially tend to affect deeper ground water

Ground water contamination can occur by nfiltration,
recharge from surface water, direct migration, and
interaquifer exchange The first and second mecha-
nisms primarnly affect surface aquifers, the third and
fourth may affect either surface or deep aquifers

1.1.1 Infiltration

Infiltration 1s probably the most common giound water
contamination mechanism A portion of the water that
falls to the earth as precipitation stowly infiltrates the soll
through pore spaces in the soil matrix As the water
moves downward under the influence of gravity, it dis-
solves matenals with which it comes into contact Water
percolating downward through a contaminated zone can
dissolve contaminants, forming leachate that may con-
tain morganic and organic constituents The leachate

will continue to migrate downward under the influence
of gravity until it reaches the saturated zone In the
saturated zone, contaminants in the leachate will spread
horizontally in the direction of ground water flow, and
vertically due to gravity (Figure 1-1) This process can
occur beneath any surface or near-surface contaminant
source exposed to the weather and the effects of infil-
trating water

1.1.2 Recharge From Surface Water

Normally, ground water moves toward or “discharges” to
surface water bodies However, movement of contami-
nants from surface water to ground water can occur In
losing streams (where normal elevation of the water
table lies below the stream channel) and during flooding
Flood stages may cause a temporary reversal in the
hydraulic gradient, with a flow of contaminants into bank
storage, or contaminant entry through improperly cased
wells (Figure 1-2a) Schwarzenbach et al (1983) docu-
mented movement of organic contaminants in nver
water into glacial sand and gravel aquifers in the Aare
and Glait valleys in Switzerland Contaminated surface
water can enter an aquifer if the ground water level
adjacent to a surface water body I1s lowered by pumping
(Figure 1-2b)

1.1.3 Direct Migration

Contaminants can migrate directly into ground water
from below-ground sources (e g, storage tanks, pipe-
lines) that lie within the saturated zone Much greater
concentrations of contaminants may occur from these
sources because of the continually saturated conditions
Storage sites and landfills excavated to a depth near the
water table may also permit direct contact of contami-
nants with ground water In addition, contaminants can
enter the ground water system from the surface by
vertical leakage through the seals around well casings,
through wells abandoned without proper procedures, or
as a result of contaminant disposal through deteriorated
or improperly constructed wells
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1.1.4 Interaquifer Exchange

Contaminated ground water can mix with uncontami-
nated ground water through a process known as
interaquifer exchange, in which one water-bearing u ut
communicates hydraulically with another This occurs
most commonly in bedrock aquifers where a well pene-
trates more than one water-bearing formation to in-
crease its yield Each water-bearing unit has its own
head potential, some potentals being greater than oth-
ers When the well 1s not being pumped, water moves
from the formations with the greatest potential to forma-
tions of lesser potential If the formation with the greater
potential contains contaminated or poorer quality water,
it may degrade the quality of water in another formation

in a process similar to direct migration, old and improp-
erly abandoned wells with deteriorated casings or seals
may contribute to interaquifer exchange Vertical move-
ment may be induced by pumping, or may occur under
natural gradients For example, Figure 1-3 depicts an
improperly abandoned well with a corroded casing that
formerly tapped only a lower uncontaminated aquifer
The corroded casing allows water from an overlying
contaminated zone to communicate directly with the
lower aquifer The pumping of a nearby well tapping the
lower aquifer creates a downward gradient between the
two water-bearing zones As pumping continues, con-
taminated water migrates through the lower aquifer to
the pumping well Downward migration of the contami-
nant may also occur through the aquitard (confining
layer) that separates the upper and lower aquifers The
rate of contammant movement through an aquitard,
however, I1s often much slower than th(-; rate of move-
ment through the direct connection of an abandoned
well
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Figure 1-3 Vertical movement of contaminants along an old,
abandoned, or improperly constructed well (adapted
by Miller, 1980, from Deutsch, 1961)

1.2 Contaminant Transport Processes

The extent to which a contaminant moves in ground
water depends on its behavior In relation to various
processes that encourage transport (Sections 121
through 1 2 4) and other processes that serve to retard
movement (Section 1 3) The shape and speed of con-
taminant plumes are determined by these processes
and by factors relating to the aquifer matenals and
characteristics of the contaminants (Section 1 4) EPA’s
Seminar Publication on Transport and Fate of Contamt-
nants in the Subsurface (US EPA, 1988) and Part li
(Physical and Chemical Processes in the Subsurface)
of EPA's Seminar Publication on Site Characterization
for Subsurface Remediation (U S EPA, 1991) provide
more detailed treatment of contaminant transport and
retardation processes

In broad terms, three processes govern ihe exient to
which chemical constituents migrate in ground water (1)
advection, movement caused by the flow of ground
water, (2) dispersion, movement caused by the irregular
mixing of waters during advection, and (3) retardation,
principally chemical mechanisms that occur during ad-
vection

1.2.1 Advection

Ground water n its natural state is constantly in motion,
although in most cases It 1Is moving very slowly, typically
at a rate of inches or feet per day Ground water flow, or
advection, 1s calculated using Darcy’s Law (Seclion
3 1 3) and I1s governed by the hydraulic principles dis-
cussed in Chapter 2 Time-of-travel calculations based
on advective flow may underestimate the rate of migra-

tion of dissolved constituents, such as chlondes and
nitrates, that experience minimal retardation by aquifer
solids due to hydrodynamic dispersion (Section 12 2)
On the other hand, time-of-travel estimates tend to over-
estimate the rate of migration for contaminants subject
to retardation processes

Figure 1-4a shows the relative concentration of a dis-
solved constituent emanating from a constant source of
contamination versus distance along the flow path Fig-
ure 1-4b shows a similar plot for a discontinuous con-
taminant source that produced a single slug of dissolved
contaminant Considering advective flow only, no dimi-
nution of concentration appears as a straight line moving
at the rate of ground water flow

Several mechanisms influence the spread of a contami-
nant in the flow field Dispersion and density/viscosity
differences may accelerate contaminant movement,
while various retardatton processes slow the rate of
movement compared to that predicted by simple advec-
tive transport
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Figure 1-4 Movement of a contentration front by advection
only (a) continuous source, (b) slug

1.2.2 Hydrodynamic Dispersion

Hydrodynamic dispersion i1s the net effect of a variety of
microscopic, macroscopic, and regional conditions that
influence the spread of a solute concentration front
through an aquifer (Mills et al , 1985, Schwartz, 1977)
Quantifying dispersion may be important in fate assess-
ment, because contaminants can move more rapidly
through an aquifer by this process than by simple plug
flow (1 e , uniform movement of water through an aquifer
with a vertical front) In other words, physical conditions
(such as the presence of more permeable zones where
water can move more quickly) and chemical processes
(such as the movement by molecular diffusion of dis-



solved species at greater velocities than the water) re-
sult in more rapid contaminant movement than would be
predicted by ground water equations for physical flow,
which assume average values for permeability

Dispersion on the microscopic scale 1s caused by (1)
external forces acting on the ground water fluid, (2)
variations in pore geomeiry, (3) molecular diffusion
along concentration gradients, and (4) variations in fluid
properties such as density and viscosity Dispersion at
this scale, also called mechanical dispersion, is gener-
ally less accurate than estimated advective flow, and for
this reason is often ignored Lehr (1988) warns against
efforts to quantify dispersion at this scale

Dispersion on the macroscopic scale 1s caused by vari-
ations in hydraulic conductivity and porosity, which cre-
ate irregularities In the seepage velocity and consequent
additional mixing of the solute Over large distances,
regional variations in hydrogeologic units can affect the
amount of dispersion that occurs Macroscopic disper-
sion may result in substantally faster travel times of
contaminants than predicted by equations for mechani-
cal dispersion Therefore, it should be the focus of efforts
to charactenze dispersion (Wheatcraft, 1989) Anderson
(1984) reviews various approaches to quantifying dis-
persion.

Dispersion can occur both in the direction of flow and
transverse (perpendicular) to it Figure 1-5a depicts dis-
persion caused by microscopic changes in flow direction
due to pore space onentation Macroscopic features,
such as lenses of higher conductivity, are shown In
Figures 1-8b and 1-5¢ Solution channeling and fractur-
ing are other macroscopic features that may contribute
to contaminant dispersion (Figure 1-6) Wells must be
carefully placed when monitoring in complicated geo-
logic systems such as those shown in Figures 1-5 (b and
¢) and 1-6 Figure 1-7a shows the effect of dispersion
as a plot of relative constituent concentration versus
distance along a flow path In the figure, the front of the
dissolved constituent distribution i1s no longer straight,
but instead appears “smeared ” Some of the dissolved
constituent actually moves ahead of what would have
been predicted If only advection were considered Fig-
ure 1-7b gives an aenal view of dispersion of a contami-
nant plume from a continuous source

In a similar manner, the concentration of a slug of ma-
terial introduced to a flow field appears as shown In
Figure 1-8a, with the peak concentration declining over
time and distance In such a situation, the total mass of
dissolved constituent remains the same, however, it
occuples a larger volume, effectively reducing the con-
centration found at any distance along the flow path An
aerial view of intermittent sources affected by dispersion
is shown in Figure 1-8b

Dispersion dilutes the concentration of a contaminant,
thus reducing peak concentrations encountered n the
ground water system Dilution alone may be suffictent to
place a contaminated aquifer outside the area of regu-
latory concern

1.2.3 Density/Viscosity Differences (NAPLSs)

Contaminants having a density lower than ground water
tend to concentrate in the upper portions of an aquifer,
while those having a higher density concentrate in the
lower portions The viscosity (tendency to resist internal
flow) of specific contaminants affects their rate of migra-
tion from different portions of the aquifer Contaminants
with these properties may be nonaqueous phase liquids
(NAPLs), or ground water with different salinities (fresh
and salt water) Figure 1-9 shows the effects of density
on migration of NAPLs In the figure, the denser NAPL
actually flows in the opposite direction of ground water
flow, due to the negative slope of the confining bed
Density varniations in ground water in deep boreholes
may result in significant errors in estimating flow direc-
tions (Oberlander, 1989) Density differences are also
important in modeling interactions between fresh- and
seawater (Frind, 1982)

Palmer and Johnson (1989) review the physical proc-
esses controlling the transport of NAPLs in the subsur-
face, Schwille (1988) and Tyler et al (1987) provide
more comprehensive treatments of this topic The char-
actenization and modehng of mult- and immiscible-
phase flow (water-NAPLs, water-ar, air-volatilized
organic compounds) I1s the subject of much current re-
search

The viscosity of water decreases as temperature In-
creases Sniegocki (1963) found that viscosity differ-
ences resulting from surface water at 66°F njected into
ground water at 43°F reduced the specific capacity (gal-
lons per minute per foot of drawdown) of an artificial
recharge well in the Grand Prairie Region of Arkansas
by 30 percent Kaufman and McKenzie (1975) observed
that the apparent hydraulic conductivity of an injection
zone in the Flondan aquifer receiving hot organic wastes
increased about 2 5 times because of temperature dif-
ferences alone

1.2.4 Facilitated Transport

Facilitated transport, in which the mobility of a contami-
nant is Iincreased relative to “expected” retardation by
adsorption to subsurface solids, Is a relatively new area
of study in the field of contaminant transport Processes
such as chelation (the formation of complex ions with
organic ligands) have long been known to increase the
mobility of metal ions More recently, attention has been
focused on increased mobility of organic compounds by
(1) cosolvation (increased solubiity of hydrophobic or-
ganic contaminants when water-miscible organic sol-
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vents, such as ethanol, methanol, and acetone, are
present in ground water), and (2) attachment to colloidal
particles that are often mobile in the unsaturated and
saturated zones of the subsurface (Huling, 1989) Sta-
ples and Geliselman (1988) and Woodburn et al (1986)
describe methods for factoring cosolvation effects into
estimates of retardation on subsurface solids

1.3 Contaminant Retardation Processes

In ground water contaminant transport, a number of
chemical and physical mechanisms retard or slow the
movement of constituents in ground water The three
general mechanisms of retardation are (1) filtration, (2)
partitioning, and (3) transformation or degradation

Flgures 1-7a and 1-8c illustrate the movement of a
concentration front by advection only (A), advection plus
dispersion (A+D), and with the addition of sorption, a
parttioning process (A+D+S) The greatest retardation,
however, results from the combined effects of advection,
dispersion, sorption, and biotransformation (A+D+S+B)
The amount of retardation resulting from sorption and
other partition processes and from biotransformation
depends on physical and chemical properties of the
aquifer and chemical properties of the contaminant

1.3.1 Filtration

Filtration is the entrapment of solid particles and large
dissolved molecules in the pore spaces of the soil and
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Figure 1-8 Effect of dispersion and retardation on movement
of a dissolved constituent slug (a) relative concen-
trations of a one-time slug compared to advection
only as it moves from time period A to B, (b) travel
on a contaminant slug from a point Intermittent
source, (c) Influence of sorption and biodegrada-
tion on concentrations downgradient at a given
point in time

aquifer media Figure 1-10 shows three major mecha-
nisms of filtration surface filtration, straining, and
physical-chemical interactions Surface filtration results
when particles are larger than the pore spaces and form
a cake on the surface, at which the pore size becomes
too small Caking may also result from biological activity,
as In the clogging mat that develops in septic tank
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absorption trenches Straiming happens when the parti-
cles are about the same size as the pore spaces In this
process, particles move through pores until they be-
come lodged at the entrance to a pore that is too small
Filtration resulting from physical-chemical interactions
with solid surfaces Is discussed under partitioning proc-
ess In the next section

Filtratton hmits flow by clogging pore spaces and reduc-
ing the hydraulic conductivity of the matenial Most dis-
solved species are retarded by partitioning or
transformation, but If the molecular size of a chemical
reaction product exceeds the pore size of the soil or
aquifer, mechanical filtration occurs Flocculation of col-
loidal matenal resulting from the precipitation of iron and

manganese oxides, as well as clogging resulting from
microbial activity, may hinder the movement of dissolved
constituents Gas bubble formation may also eventually
clog pore spaces, resulting in a filtering effect For ex-
ample, a 10 percent increase in the air content of media
voids can cause a 15 percent decrease In effective
porosily, a 35 percent decrease in permeability, and
about a 50 percent reduction in dispersion (Orlob and
Radhaknishna, 1958)

Filtration may also result in residual contamination that
1s highly resistant to both mobilization by desorption into
arr and water and microbial degradation For example,
the soill fumigant 1,2-dibromomethane, which is readily
biodegraded under aerobic conditions, has been found
in agricultural soils up to 19 years after its last known
application, due to entrapment in soil micropores (Stein-
berg et al , 1987)

1.3.2 Partitioning

Retardation of dissolved contaminants in an aquifer can
result from two major processes that change the form,
but not necessanly the toxicity, of the contaminant (1)
sorption, including both ion exchange and physical ad-
sorption, and (2) precipitation

lon exchange mvolves the replacement of a cation at-
tached to a negatively charged site on a mineral surface
by another cation The mineralogy and cation exchange



capacity of an aquifer gives a general indication of
its effectiveness in retarding cationic contaminants As
long as the ionic contaminant has a greater affinity for
the solid surface than for existing adsorbed ions, retar-
dation will occur Once the exchangeable sites are filled,
the contaminant will travel unretarded (see A+D+S
curve in Figures 1-7a and 1-8¢) Precise predictions of
retardation by 1on exchange are not possible because
of interactions among multiple 1ons Furthermore,
changes in environmental conditions such as pH and Eh
(Section 14 2) or ground water solution composition
may remobilize contaminants formerly bound to geo-
logic materials

In fact, the release of ions by exchange processes may
aggravate a contamination problem Hughes et al
(1971) documented increases in water hardness as a
result of the displacement of calcium and magnesium
ions from geologic matenals by sodium or potassium in
landfill leachate Rovers et al (1976) observed release
of aluminum to solution from soil contaminated by indus-
trial waste

Most organic contaminants are nonionic and, conse-
quently, parhtioning to aquifer solids usually occurs by
Pphysical adsomption processes such as Van der Waals
and hydrophobic bonding

The adsorption isotherm s a measure of changes in the
amount of a substance adsorbed at different concentra-
tions at a constant temperature It 1s the simplest and
most widely used method for predicting physical adsorp-
tion. Empirical constants can be calculated from adsorp-
tion isotherms, and these constants then can be used to
predict the amount of adsorption at concentrations other
than those measured This method assumes, however,
that temperature and other environmental conditions are
the same as those under which the isotherms were
measured originally

Precipitation reactions, in which geochemical reactions
in the aquifer result In a contaminant moving from a
dissolved form to an insoluble form, may be an important
retardation process for inorganic contaminants As with
adsorption, precipitation reactions are reversible, so it
Is possible for a contaminant to remobilize f environ-
mental conditions change in the aquifer Precipitation-
dissolution reactions are largely determined by
acid-base equilbna and redox conditions (Section
1.4 2). Geochemical distnibution-of-species and reaction
progress codes (Chapter 6) may help dentify important
inorganic precipitation reactions

1.3.3 Transformation

All processes that transform a contaminant retard trans-
portin that the onginal contaminant is no longer present
Unless the contaminant’s reaction products are nontoxic
inorganic elements, however, contamination may still

persist Complexation reactions involving heavy metals
may even Increase toxicity and mobility Some organic
contaminants may be transformed by hydrolysis n
ground water, but they often produce intermediate or-
ganic compounds of varying toxicity Microbiological ac-
tivity 1s probably the most important means by which
contaminants are transformed in the subsurface

1.4 Contaminant Plume Behavior

The physical mechanisms of advection and dispersion,
as well as a vanety of chemical and microbial reactions,
interact to influence the movement of contaminants in
ground water The degree to which these mechanisms
influence contaminant movement depends on a number
of factors, including geologic material properties, pH and
Eh, leachate composition, and source characteristics

1.4.1 Geologic Material Properties

The rate of ground water movement is largely depend-
ent on the type of geologic matenal through which it 1s
moving More rapid movement can be expected ithrough
coarse-textured matenals such as sand or gravel than
through fine-textured matenals such as silt and clay The
physical and chemical composition of the geologic ma-
terial 1s equally important Fine-textured matenals with
a high clay content favor retardation through ion ex-
change and physical adsorption Figure 1-11 illustrates
the influence of differing geology on the shape of con-
taminant plumes

1.4.2 pH (Hydrogen lon Activity) and Eh
(Redox Potential)

The pH and Eh of the geologic matenials and the waste
stream strongly influence contaminant mobility The pH
affects the speciation of many dissolved chemical con-
shituents, which in turn determines solubility and reactiv-
ity lon exchange and hydrolysis reactions are also
particularly sensitive to pH Eh influences many precipi-
tation and dissolution reactions, particularly those in-
volving iron and manganese, and determines In large
measure the type of biodegradation that occurs

1.4.3 Leachate Composition

The influence of all other factors on contaminant migra-
tion ultimately depends on the composition of the
leachate or contaminants entering the ground water
system Similar contaminants may behave differently in
the same environment due to the influence of other
constituents In a complex leachate Solubility (which
affects the mobile concentration), density, chemical
structure, and many other properties can affect net con-
taminant migration For example, Figure 1-12 illustrates
the appearance of two chemicals, benzene and chlo-
nde, in a monitoring well Even though both contami-
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taminant plumes (from Miller, 1985)

nants may have entered the ground water system at the
same time and in the same concentration, their detec-
tion in the monitoring well reveals significantly different
migration rates Chlonde has migrated essentially unaf-
fected, while benzene has been retarded significantly
Table 1-2 identifies references with addilional informa-
tion on contaminant chemical behavior in sol and
ground water

Sources releasing a variety of contaminants create com-
plex plumes composed of different constituents at down-
gradient positions An idealized plume configuration
composed of five different contaminants (A-E) moving
at different rates through the ground water system Is
shown tn Figure 1-13 Consequently, the onset of con-
tamination at a supply well may mark the first of a set of
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Figure 1-12 Benzene and chloride appearance 1n a monitoring
well (from Geraghty and Miller, 1985)

Downstraam Limit
of Contaminants

Constant release but variable constituent source
(from LeGrand, 1965)

Figure 1-13



overlapping plumes of different compounds advancing
at different rates These plumes may aifect the well in
sequence for decades, even If the onginal contaminant
source is removed (Mackay et al , 1985)

The effect of contaminant density on contaminant trans-
portin ground water systems Is presented in Figure 1-9
Substances with densities lower than water may “float”
on the surface of the saturated zone Similarly, sub-
stances with densities higher than that of water can sink
through the saturated zone until they encounter an 1m-
permeable layer In the situation shown in Figure 1-9,
the surface of an underlying impermeable layer slopes
opposite to the direction of ground water flow In the
overlying formation Dense contaminant movement fol-
lows the slope of the impermeable boundary, while
some dissolved product moves with the ground water

1.4.4 Source Characfteristics

Source characteristics include the source mechanism
(i.e., infiltration, direct migration, interaquifer exchange,
ground water/surface water nteraction), the type of
source (particularly point or nonpoint ongination), and
temporal features Source mechanisms were discussed
in Section 1.1. Source types are covered in more detail
in Chapter 7. Temporal characteristics include the man-
ner in which a contaminant is released over time and the
time elapsed since the contaminant’s release

Figure 1-14 presents the effects caused by changes in
the rate of waste discharge on plume size and shape

Plume enlargement results from an increase in the rate
of waste discharge to the ground water system Similar
effects can be produced If the retardation capacity of the
geologic materials I1s exceeded, or If the water table rises
closer to the source, causing an increase In dissolved
constituent concentration Decreases In waste dis-
charge, lowering of the water table, retardation through
sorption, and reductions in ground water flow rate can
diminish the size of the plume Stable plume configura-
tions suggest that the rate of waste discharge i1s at a
steady state with respect to retardation and transforma-
tion processes Aplume will shrinkin size when contami-
nants are no longer released to the ground water system
and a mechanism to reduce contaminant concentrations
Is present Unfortunately, many contaminants, particu-
larly complex chiorinated hydrocarbons and heavy met-
als, may persist in ground water for extremely long time
periods without appreciable transformation Lastly, an
intermittent or seasonal source can produce a seres of
plumes that are separated by the advection of ground
water during periods of no contaminant discharge

1.4.5 Interactions of Various Factors on
Contaminant Pilumes

The various factors discussed above can result in widely
varying sizes and shapes of contaminant plumes Figure
1-15 shows 18 different types of contaminated zones
Table 1-1 explans the relative importance of dilution,
degradation, and sorption in each plume and lists exam-
ples of the types of contaminants typically involved
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Figure 1-15 Various types of contaminated plumes in the upper part of the zone of saturation, X marks the core of contamination
beneath a waste site, and Z marks the point downstream at which some zones terminate See Table 1-1 for interpre-
tations (from LeGrand, 1965)

Table 1-1 Explanation of Contaminant Plumes Shown in Figure 1-15 (adapted from LeGrand, 1965)
Liquid
Waste
Recharge
Contami P G d b Forming Composite Examples of
ntaminant Plume Governed by Water-Table Waste Type of
Site Dilution Decay Sorption  Mound Sites Contaminant Remarks
A Not appreciable = No No No No Chlonides,
In ground, nitrates
some in stream
B Not appreciable Either decay or sorption No No —
or both
C Improbable Perhaps Perhaps No No Sewage, Probably small waste release or
radioactive good attenuation in zone of
wastes aeration
D No plume Either decay or sorption No No Sewage, Contaminant is completely
formed (see or both radioactive attenuated in zone of aeration
remarks) wastes and does not reach zone of
saturation
E Slight near Possibly Possibly No No —_ Lack of dispersion near waste
waste site, site typical of linear openings in
some at greater rock, contaminated water
distance downgradient disperses into
different type of material
F Yes, suggestive Improbable Improbable No No Chilondes,
of nearly nitrates
homogeneous
porous matenals
G Not appreciable Not Not No No Chlorides, Irregularittes in permeabifity
in ground, appreciable appreciable nitrates cause deviation In plume
some near and
in stream
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Table 1-1 Explanation of Contaminant Plumes Shown in Figure 1-15 (adapted from LeGrand, 1965) (Continued)
Liquid
Waste
Recharge
Forming Composite Examples of
Contaminant Plume Governed by Water-Table Waste Type of
Site Dilution Decay Sorption  Mound Sites Contaminant Remarks
H Yes, suggestive  Probably either decay or No No Sewage,
of nearly sorption or both radioactive
homogeneous wastes
porous material
{ Yes Perhaps Perhaps No No — Downgradient split in plume
may be due to dense
impermeable rock or great
Increase In sorptive materials
J Slight Not Probably No No Chlorides, Downgradient plume is due to
appreclable not nitrates shunting of contaminant to land
appreclable surface at tail of upper plume
and reinfiltration of contaminant
K Yes, suggestive Either decay or sorptinn Yes, No Sewage, Irregularies in plume caused by
of nearly or both forming a radioactive changes in permeability and/or
homogeneous water-table wastes sorption
porous materials mound
L Yes, suggestive Either decay or sorption Yes, No Sewags,
of nearly or both forming a radioactive
homogeneous water-table wastes
materials mound
M Some In ground  Not Not Yes, —_ Chlondes, Deviation in plume due to
and stream appreciable appreciable forming a nitrates impermeable zone
water-table
mound
N Yes Either decay or sorption Yes, No Sewage, Contaminated water from three
or both forming a radioactive waste sites at right angles to
water-table wastes ground water flow, merging to
mound form a composite plume
(o] Yes Either decay or sorption No Yes Sewage, Contaminated water from two
or both radioactive waste sites parallel to ground
wastes water flow, forming a
compostive plume
P Some Either decay or sorption No Yes Sewage, Contaminated water from two
or both radioactive waste sites at an angle with
wastes ground water flow, forming a
composite plume
Q Some Either decay or sorption No Yes Sewage, Large composite plume formed
or both radioactive by several waste sites
wastes
R Yes Either decay or sorption No No Sewage, Pumping well draws plume
or both radioactive toward it, contaminated water I1s
wastes greatly diluted at well

1.5 Guide to Major References on
Contaminant Chemical
Characteristics and Behavior In the

Subsurface

As discussed in Chapter 8 (Section 8 1), the number of
potential ground water contaminants is far too large to
provide any detailed discussion of the chemical charac-
teristics of specific contaminants Table 1-2 provides an
index to major references containing more detailed in-
formation about specific chemical processes and chemi-
cal charactenistics and behavior of contaminants in the

12

subsurface Generally, only texts, edited volumes, and
conference proceedings are indexed in Table 1-2, but
some mmportant review papers published in scientific
Journals are also included The references include (1)
general chemical references, (2) compilations of degra-
dation and other chemical constants for collections of
chemicals, (3) references on ground water and vadose
zone/soll chemistry, (4) references on trace elements
and heavy metals, (5) references on toxic and other
organic chemicals, and (6) references on microbial ecol-
ogy and biodegradation



Table 1-2
Topic

Index to Major References on Contaminant Chemical Characteristics and Behavior in the Subsurface

References

General Chemical
References

Chemical Fate Data

Natural Baseline
Chemistry

Chemical/Contaminant
Hydrogeology

Vadose Zone/Soll
Chemustry

Contaminant Sources

Trace Elements/Heavy
Metals

Toxic and Other Organic
Chemicals

Biodegradation/
Contaminant
Microbiology

ACS (annual), Budavari (1989), Dean (1992), Howard and Neal (1992), Lewis (1992a), Lide (1993), Perry
and Chiltin (1973), Verschaueren (1983), Hazardous Chemicals ACGIH (1992), Armour (1991), Government
Institutes (annual), Keith (1993), Lewis (1990, 1991, 1992b, 1993), NIOSH (1990), Occupational Safety
Health Services (1990), Patnalk (1992), Shafer-(1993), Shineldecker (1992), US Coast Guard (1985), U S
DOT (1990), U S EPA (1985, 1992a), Agrochemicals Fisher (1991), James and Kidd (1992), Kidd and
James (1991), Montgomery (1993), Walker and Keith (1992)

Callahan et al (1979), Gherii et al (1988, 1989), Howard (1989, 1990a, 1990b, 1992, 1993), Howard et al
(1991), Kollig et al (1991), Lyman et al (1990, 1992), Mabey et al (1982), Montgomery (1991),
Montgomery and Welkom (1989), Ney (1990), Rai and Zachara (1984), U S EPA (1990), Sorption/Partition
Coefficients Ellington et al (1991), Leo et al (1971), Sabli (1988), Henry’s Law Constants Yaws et al
(1991), Hydrolysis Rate Constants Ellington et al (1991)

See Table 7-4

_Texts Devinny et al (1990), Domencio and Schwartz (1991), Fetter (1992), Matthess (1982), Mazor (1990),

Palmer (1992), Tinsley (1979), Papers Back and Baedecker (1989), Back and Freeze (1983), Mackay et al
(1985), Subsurface Transport Processes Gelhar et al (1985), Guarmaccia et al (1992-multiphase), Glven
et al (1992a, 1992b), Knox et al (1993), Luckner and Schestakow (1991), US EPA (1992b)

Environmental Scierice and Engineering (1985), Yaron et al (1984), Inorganic Chemicals Bar-Yosef et al
(1989), Toxic Organic Chemicals Dragun (1988), GersHl et al (1989), Goring and Hamaker (1972),
TNO/BMFT (1985, 1989)

See Table 8-6

Bowen (1966), Hem (1964), National Research Council Canada (1976, 1978a, 1978b, 1979a, 1979b, 1981,
1982), Purves (1978), Thibodeaux (1979), Thornton (1983), Shaw (1989), Soi/ Alloway (1991), Aubert and
Pinta (1978), Copenhaver and Wilkinson (1979a), Dotson (1991), Fuller (1977), Gibb and Cartwright (1987),
Jacob (1989-selenium), Kabata-Pendias and Pendias (1984), Kotaby-Amacher and Gambrell (1988), Lisk
(1972), McBride (1989), Page (1974), Rai and Zachara (1988), Zachara et al (1992), Ground-Water Allen
et al (1990, 1993), Forstner and Wittman (1979), Kramer and Duinker (1984), Moore and Ramamoorthy
(1984a), Ral and Zachara (1986), Singer (1973)

Lyman et al (1992), NAS (1972), Thibodeaux (1979), Soi/ Meikle (1972), Morni et al (1982), Nelson et al
(1983), Overcash (1981), Sawhney and Brown (1989), Ground Water Borchardt et al (1977), Faust and
Hunter (1971), Gerstl et al (1989), Moore and Ramamoorthy (1984b), Halogenated Aliphatic Hydrocarbons
Bnitton (1984), Moore and Ramamoorthy (1984b), Monocyclic Aromatic Hydrocarbons and Halides

Chapman (1972), Gibson and Subramian (1984), Moore and Ramamoorthy (1984b), Reinke (1984), Phalate
Esters Ribbons (1984), Pierce et al (1980), Polycyclic Aromatic Hydrocarbons Moore and Ramamoorthy
(1984b), Safe (1984), Pesticides Cheng (1990), Copenhaver and Wilkinson (1979b), Crosby (1973), Guenzi
(1974), Hamaker (1972), Hamker and Thompson (1972), Haque and Freek (1975), Kearney and Kaufman
(1972), Moore and Ramamoorthy (1984b), NAS (1972), Ou et al (1980), Rao and Davidson (1980),
Somasundarum and Coats (1991), Explosives Environmental Science and Enginesrning (1985)

Borchardt et al (1977), Gibson (1984), Kobayashi and Rittman (1982), Mitchell (1971), Rogers (1986), Scow
(1982), Zehnder (1988), Soif Huang and Schnitzer (1986), Nelson et al (1983), Ramsey et al (1972),
Ground Water Bitton and Gerba (1984), Bouwer and McCarty (1984), Ghiorse and Wilson (1988), Maki et
al (1980), Tabak et al (1981), Wilson and McNabb (1983)
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Chapter 2
Potenitiometric Maps

A water table or potentiometric map Is one of the most
basic and useful tools available for delineation of well-
head protection areas (WHPAs) This chapter covers
basic concepts required for compilation and interpreta-
tion of ground water maps, and provides examples of
common errors that resuit when these concepts or the
charactenstics of the site are not understood Chapter 5
discusses the actual process of hydrogeologic mapping
for wellhead protection

2.1 Fundamental Hydrogeologic
Concepts

2.1.1 Hydraulic Head and Gradienis

The water level In a well, usually expressed as feet
above sea level, 1s the total head (ht), which consists of
elevation head (z) and pressure head (hp)

ht=z+hp (2-1)
In an unconfined aquifer, pressure head (hp) equals
zero at the water table surface because it marks the
transition from negative pressure head in the vadose
zone to a pressure head that may be either negative or
positive In the saturated zone Serous Inaccuracies In
defining ground water flow paths may result from meas-
uring water levels in monitoring wells without consider-
ing the pressure potential component

In a ground water recharge zone, the pressure head
decreases with increasing depth (1 e , hp in equation 2-1
1S negative), in a discharge zone, the pressure head
icreases with depth This 1s llustrated i Figure 2-1 In
the figure, the water level in well b 1s lower than the water
table surface This Is because the well I1s cased to a
depth where it 1s actually measuring the pressure poten-
tial of the water table at well ¢ Conversely, wells d and
e In the discharge area are measuring the pressure
potential of the water table upslope from the actual
discharge area Wells d and e will flow like artesian wells
even though there is no confining layer

Typically, wells are not installed at different depths in the
same location to allow determination of whether the alea
15 In a recharge or discharge zone Topography I1s a
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simple indicator, with discharge in topographically low
areas and recharge in topographically high areas Plot-
ting of depth-to-water table versus well depth for a num-
ber of wells In an area can also serve as an indicator of
whether ground water I1s recharging or discharging Fig-
ure 2-2 defines the areas of such a plot where the scatter
of points would be expected to fall in recharge areas and
discharge areas

The hydraulic gradient (I or 1) Is measured as the change
in water level per unit of distance along the direction of
maximum head decrease ltis determined by measuring
the water level in several wells that measure the true
unconfined water table or the same confined aquifer
The hydraulic gradient 1s the driving force that causes
ground water to move in the direction of decreasing total
head, and 1s generally expressed in consistent units
such as feet per foot For example, if the difference in
water level In two wells 1,000 feet apart 1s 8 feet, the
gradient 1s 8/1,000 or 0 008 The direction of ground
water movement and the hydraulic gradient can be de-
termined with nformation from three wells (Section
221)

2.1.2 Unconfined and Confined Aquifers

Aquifers are broadly classified as unconfined, where the
top of the saturated zone is at atmospheric pressure,
and confined, where a slowly permeable geologic layer
prevents upward flow when the hydraulic head i1s above
the level of the confining layer, causing pressure head
at the top of the aquifer to exceed atmospheric pressure
Confining layers are also called aquitards Confined
aquifers are classified as either semiconfined (leaky) or
highly confined, depending on how permeable the con-
fining layer 1s Aquifer classification 1s especially impor-
tant in selecting methods for interpreting pump test data
and serves as an indicator of the vulnerability to ground
water contamination

In humid and semiand regions, in particular, the water
table in an unconfined aquifer generally conforms to the
surface topography, although it usually has greater
depth under hills than under valleys (Figure 2-1) The
hydraulic gradient (Section 2 1 1) slopes away from di-
vides and topographically high areas toward adjacent
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Figure 2-1. Cross-sectional dlagram showing the water level as measured by piezometers located at varlous depths The water
level In plezometer ¢ is the same as well b since it lies along the same equipotential line (from Mills et al , 1985).

low areas, such as streams and nvers The high areas
serve as ground water recharge areas, while the low
areas are ground water discharge zones In general, the
water table lies at depths ranging from 0 to about 20 feet
in humid and semianid regtons, but often lies hundreds
to thousands of feet deep in some desert environments
Generally, surface streams and waterbodies such as
swamps, ponds, lakes, and flooded excavations (aban-
doned gravel pits, highway borrow pits, etc) can be
considered surface expressions of the water table

Unconfined water tables may be either perched or re-
gional Perched water tables rest on impermeable
strata, below which unsaturated flow occurs (see Figure
2-3, upper right corner) In regional aquifers, all water
moves by saturated flow until it reaches a point of sur-
face discharge (Figure 2-3, Aquifer C) Aquifers Aand B
in Figure 2-3 exhibit characteristics of both perched and
regional water tables Most of their water 1s part of the
regional water, although it may travel part-way by un-
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saturated flow before reaching Aquifer C Some water,
however, reaches the surface as springs, a common
situation with perched aquifers

2.1.3 Heterogeneity and Anisotropy

Aquifers in which the hydraulic conductivity or other
properties are nearly uniform are called homogeneous,
those in which properties are variable are heterogene-
ous or nonhomogeneous If hydraulic conduchivity at a
given point in an aquifer differs in the vertical or horizon-
tal directions, it 1s anisotroprc If hydraulic conductivity 1s
uniform in all directions, which Is rare, the aquifer 1s
isotropic Figure 2-4a illustrates four possible combina-
tions of these charactenistics The distinctions between
these terms may not seem obvious at first, but a careful
examination of this figure should provide a clearer un-
derstanding
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static water level (from Freeze and Cherry, 1979)

Figure 2-4b illustrates three different types of aquifer
heterogeneity Because both unconsolidated and con-
solidated sedimentary strata are typically deposited In
horizontal units (example B in the figure), hydraulic con-
ductivity 1s generally greater horizontally than vertically
by at least an order of magnitude The third example (C
in the figure) 1s most likely to occur as a result of faulting
or other tectonic activity Failure to consider heteroge-
neity and anisotropy can lead to significant underestima-
ton of time of travel of contaminants and incorrect
delineation of the direction of ground water flow

Aquifer heterogeneity 1s usually characterized by identi-
fying vertical and lateral changes in the texture and other
physical characteristics of soil, other unconsolidated
maternial, and rock from borehole logs (Section 5 4 2)
Anisotropy 1s usually characterized by aquifer tests
(Section 33 5)

2.1.4 Porous Media Versus Fracture/Conduit
Flow

Ground water flows in the interconnected pore spaces
between solid particles in an aquifer Most ground water
flow equations assume that the water 1s flowing through
material where the pore sizes are small enough that
water flows without turbulence This i1s generally true in
aquifers where primary porosity has not been altered by
geologic or soil-forming processes that create secon-
dary openings, often called secondary porosity Secon-
dary openings are classified as fractures, which develop
as a result of deformation and stress release by geologic
processes, and as solution openings, which are formed
from the enlargement of fractures by dissolution of sol-
uble minerals such as carbonate in imestone (Figure
2-5)

Figure 2-3 Confined, unconfined, and perched water in a simple stratigraphic section of sandstone and shale (from Davis and

DeWiest, 1966)
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Flow In fractures Is most significant in crystaline rocks
(granites, various metamorphic rocks) because primary
porosity of these rocks 1s very low Many consolidated
sedimentary aquifers are fractured to varying degrees
Aquifers where fracture flow is significant tend o be
anisotropic Ground water flow directions in these aqui-
fers may depart significantly from the directions indi-
cated by potentiometric surface maps Analysis of pump
test data in fractured rocks requires special care be-
cause most analytical solutions assume porous-media
flow Fractures are typically narrow enough to prevent
turbulent flow, however, making adaptation of giound
water flow equations possible Fracture flow is a major
contrnibutor to macro-scale hydrodynamic dispersion,
causing contaminants to move much more quickly in an
aquifer than would be predicted by flow calculations
based on primary porosity

Flow in cavernous imestones and dolomites 1s called
conduit flow The subsurface channels can be large and
continuous enough that the system 1s more like a series
of interconnected pipes than a porous material As with
crystalline rocks, primary porosity of imestones tends to
be very low, so that most ground water flow I1s concen-
trated in fractures and solution channels Aquifers where
conduit flow dominates are called karst aquifers Unlike
fracture-rock aquifers, however, ground water flow in
karst aquifers 1s often rapid enough that Darcy’s Law
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(Section 3 1 3) 1s not valid The irregular shape of solu-
tion channels in these aquifers makes the use of con-
ventional methods for analyzing pump test data and
modeling ground water flow essentially useless Figure
2-6 illustrates the wide fluctuation in ground water levels
that can occur in a karst aquifer Table B-2 in Appendix
B identifies major references where more informa-
tion can be obtained about karst geomorphology and
hydrology

2.1.5 Ground Water Fluctuations

Ground water levels fluctuate throughout the year in
response to natural changes in recharge and discharge
(or storage), changes In pressure, and artificial stresses
Fluctuations brought about by changes In pressure are
imited to confined aquifers Most of these changes are
short-term and are caused by loading, such as by a
passing train compressing the aquifer, or by an increase
in discharge from an overlying stream Others are re-
lated to changes in barometric pressure, tides, and
earthquakes Languth and Treskatis (1989) describe an
unusual situation where a pumping test in a semicon-
fined aquifer system temporarily increased water levels
in observation wells tapping the overlying confining bed
instead of resulting in the usual immediate lowering
None of these fluctuations reflect a change in the vol-
ume of water in storage Table 2-1 summarizes 13
mechanisms that lead to fluctuations in ground water
levels

Water level fluctuations in confined aquifers can be
characterized by the barometric efficiency, the ratio of
change in head to change In atmospheric pressure This
ratio usually falls in the range of 0 20 to 075 (Freeze
and Cherry, 1979) The possibility of using barometric
efficiency to estimate the storage properties of confined
aquifers was first suggested by Jacob (1940) Use of
barometric efficiency to estimate a range of aquifer prop-
erties, including storage coefficient, transmissivity, and
bulk elastic properties, has been reported in a number
of relatively recent papers (see Table 2-2)

Fluctuations that involve changes In storage are gener-
ally more long lived Most ground water recharge takes
place during the spring and causes the water level to
nise Following this period of a month or two, the water
level declines in response to natural discharge, largely
to streams Although the major period of recharge oc-
curs in the spring, minor events can happen any time it
rains A number of human activities cause long-term
fluctuations In ground water levels Ground water pum-
page reduces ground water levels, activities such as
agricultural irngation, artificial recharge, leakages from
ponds, lagoons and landfills tend to cause locahzed
increases In ground water levels Deep well injection
into confined aquifers causes elevation in the poten-
tiometric surface
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Evapotranspiration effects on a surficial or shallow aqui-
fer are both seasonal and daily Plants, serving as min-
ute pumps, remove water from the capillary fringe or
even from beneath the water table during hours of day-
light in the growing season This results in a diurnal
fluctuation in the water table and stream flow

Table 2-3 summanizes typical natural conditions affect-
ing ground water fluctuations in response to (1) freezing,
(2) molsture regime, (3) surface drainage and degree of
slope, and (4) thickness of the zone of aeration Allthese
factors need to be considered in compiling data on water
levels in wells when preparing potentiometric surface
maps Table 2-2 provides an index to references that
provide more detailed information on mechanisms that
cause water level fluctuations
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2.1.6 Ground Water Divides and Other
Aquifer Boundaries

In surface hydrology, a drainage divide forms the bound-
ary between two watersheds Ground water drainage
basins are similar to surface watersheds, except that
they are defined by contour of equal hydraulic head
(equipotential ines) rather than topographic contours In
unconfined, homogenous, Isotropic aquifers, these con-
tours generally follow the surface topography, albeit with
a more subdued gradient (see Figure 2-1) However,
topography Is only one of many factors that influence the
location of ground water divides and the flow of water
within a basin Defining a well’s zone of contribution
(Section 4 1 4) i1s a major focus of the wellhead protec-
tion process Consequently, an understanding of the
boundary conditions in an aquifer 1s essential, both in



Table 2-1

Unconfined Confined

Natural

Summary of Mechanisms That Lead to Fluctuations in Ground Water Levels

Short-
hved

Climatic
Influence

Man-
Induced

Long-

Diumal Seasonal term

Ground water recharge X

x

Air entrapment durning X

recharge

Evapotranspiration

Stream bank storage effects
Tidal effects near ocean

X X X X

X X X X

Atmospheric pressure effects

Confined aquifer external
loading

Earthquakes

Ground water pumpage
Deep-well injection
Artficial recharge/fleakage X

Agriculture irngation/drainage X

Geotechnical drainage X

X X

X

X X X X X
X X X X X

Source Adapted from Freeze and Cherry (1979)

Table 22 Index to References on Water Level Data interpretation and Flow Net Analysis
Topic References
Potentiometric Maps

Water Level Fluctuations

Andreason and Brookhart (1963—reverse fluctuations), Freeze and Cherry (1979), Kohout

(1960—=effects of salt water), Languth and Treskatis (1989), Moench (1971), Rockaway (1970), Sayko
et al (1990), Walton (1963), Weiss-Jennemann (1991—offsite effects), Winograd (1970), Barometric
Effects Peck (1960), Todd (1980), Turk (1975), Weeks (1979)

Data Interpretation

Blanchard and Bradbury (1987), Chapus (1988), Crouch (1986), Davis and DeWiest (1966), Fetter

(1981), Henning (1990), Hoeksma et al (1989), Rockaway (1970), Saines (1981), Staliman (1956),

Struckmeler et al (1986)

Confined Aquifer Barometric
Efficiency

Determination Clark (1967), Davis and Rasmussen (1993), Aquifer Transmussivity/Storage Coefficient
Evans et al (1991), Furbish (1991), Jacob (1940), Ritzi et al (1991), Rojstaczer (1988), Aquifer Bulk

Elastic Properties Domenico (1983), Evans et al (1991), Rojstaczer and Agnew (1989)

Flow Net Analysis
General
Case Studies

Nelson (1960, 1961), Scott (1992)
Hollet (1985), Hunt and Wilson (1974), Rice and Gorelick (1985)

hydrogeologic mapping (Chapter 5) and the use of mod-
els (Chapter 6) for delineating WHPAs

As noted above, a ground water divide Is one of the most
important boundanes for delineating a well’'s zone of
contribution Figure 2-3 illustrates several ground water
divides Infiltrating water entering the aquifer flows o a
discharge point determined by where the water enters
the aquifer (which side of the divide) Note that the
topographic divide for Aquifer A does not quite coincide
with the ground water divide due to the dip of the sedi-
ments

Figure 2-7 illustrates more than 40 boundary conditions
that may define the edges of a ground water drainage
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area These boundary conditions are classified as (1)
barrier boundaries, created by geologic or other mater:-
als of contrasting (lower) permeability compared to the
aquifer, (2) permeable recharge boundaries, and (3)
permeable discharge boundaries Figure 2-7 further
classifies boundary conditions according to whether
they represent head conditions or flow conditions It also
shows the number of dimensions required to represent
the condition (1) points (one-dimenstonal), (2) lines
(two-dimensional), and (3) areas (three-dimensional)
These distinctions become important when analytical
and numerical ground water models are selected and
used (Chapter 6)



Table 2-3 Factors and Natural Conditions Affecting Natural Ground Water Fluctuations

Factor/Zone

Ground Water Conditions and General Characteristics of Water Level Fluctuations

Soll Freezing
1 Permafrost areas

2. Uniform freezing In the soil zone at
the land surface

3 Sporadic freezing of the zone of
aeration

4 Complete absence of sail freezing
Soll Molsture Regime
1. Region of high moisture

2 Reglon of moderate moisture

3. Region of small moisture
Surface Drainage and Degree of Slope

1 Wel developed drainage (generally
mountainous topography)

2 Moderately developed drainage
(generally uplands)

38 Poorly developed drainage
nerally plains and valley

Two summer water level nses

Marked water level rise in the spring, followed by water level recession until autumn A
second smaller water leve! rise in autumn, followed by gradual decline until spring

Water level rises mainly in the winter

Water level rises during rainy season

The amount of precipitation s higher than evapotranspiration Water levels affected rapidly by
small rains and small temperature varniations Small amplitude of water fluctuations

As water table 1s at greater depth than in zone 1, amplitudes of water level fluctuations are
more distinct and greater than in zones 1 and 3

Evapotranspiration 1s a dominant factor in water leve! fluctuations

High runoff and low infiltration to ground water Water level fluctuation amplitude may be high

Moderate runoff and infiliration to ground water Water level fluctuation amplitudes are lower
than in zone 1 but huigher than in zone 3

Low runoff and high infiltration to groundwater Water table at shallow depth High
evapotranspiration

(ge
bottoms)
Thickness of Zone of Aeration (d)

1. dislessthan05m
over spring discharge

2. dis betwsen 05 and 4 m thick.
evapotranspiration

3 dlisgreaterthan4 m
importance

Water level fluctuations of small amplitude Evapotranspiration from the water table prevails
Water level fluctuations of larger amplitude than in zone 1 Spring discharge prevails over

Water level fluctuations of small amplitude and evapotranspiraton might be of limited

Source Adapted from Brown et al (1983)

2.1.7 Gaining and Losing Streams

From a hydrogeologic point of view, there are three
major stream types—ephemeral, intermittent, and per-
ennial. Stream type 1s determined by the relation be-
tween the water table and the stream channel
Consequently, observation of the character of water flow
in a stream provides useful information about ground
water in the area

An ephemeral stream owes its entire flow to surface
runoff. It may have no well-defined channel and the
water table consistently remains below the bottom of the
channel (Figure 2-8, A-A’) Water leaks through the
channel into the ground, recharging the underlying
strata

Intermittent streams flow only part of the year, generally
from spring to midsummer, as well as during wet peri-
ods Durning dry weather, these streams flow only be-
cause ground water discharges into them when the
water table nises above the base of the channel (Figure
2-8, B-B’). Eventually, sufficient ground water dis-
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charges throughout the basin to lower the water table
below the channel, which then becomes dry This re-
flects a decrease in the quantity of ground water in
storage During late summer or fall, a wet period may
temporarily raise the water table enough for ground
water to discharge into the stream Thus, during part of
the year the floodplain matenals are full to overflowing,
causing the discharge to increase in a downstream
direction At other times, water will leak into the ground,
reducing the discharge

Perennial streams flow year-round Typically, the water
table is always above the stream bottom Hence, ground
water 1s discharged to the surface and streamflow in-
creases downstream (Figure 2-8, C-C’) A stream in
which the discharge increases downstream is called a
gaining stream A stream 1n which the discharge de-
creases downstream due to leakage i1s called a losing
stream In a losing stream, the water table is below the
bottom of the stream, but the amount discharged from
the stream to the subsurface 1s not enough to eliminate
surface flow during dry periods During wet periods,
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Figure 2-8 Relationship between water table and stream type (from U S EPA, 1990)

surface flow in perennial streams comes from a mixture
of surface runoff and ground water inflow During dry
periods, the flow of perennial streams comes primarily
from ground water discharge and s called the base flow

2.2 Preparing and Using Potentiometric
Maps

2.2.1 Plotting Equipotential Contours

The hydraulic gradient can be graphically shown by
plotting either unconfined water table levels or pressure
potentials (if the pressure head of a confined aquifer 1s
high enough to raise the total head above the ground
surface) on a map A water table map usually refers to
the hydraulic gradient of an unconfined aquifer, and a
plezometric (pressure) surface map usually refers to the
pressure potentials of confined aquifers Either type of
map Is called a potentiometric map In practice, the
terms “water table,” “potentiometric,” and “piezometric”
are often used interchangeably Struckmeier et al
(1986) provide a good review of other types of hydro-
geclogical maps and graphical representation of ground
water systems.

The contours on a potentiometric map are called equipo-
tential lines, indicating that the water has the “potential”
to rise to that elevation In the case of a confined aqui-
fer, however, it cannot reach that elevation unless the
confining unit is perforated by a well Potentiometric
surface maps are essential to any ground water inves-
tigation, because they indicate the direction in which
ground water is moving, and provide an estimate of the

30

gradient, which controls ground water velocity As dis-
cussed In Section 2 3 2, interpretations of flow directions
in aquifers must take into account anisotropy and
heterogeneity

Potentiometric maps provide some information on aqui-
fer homogeneity, provided that well data points are close
enough to allow reasonably accurate contouring Amap
of a uniform, homogeneous aquifer will have equally
spaced equipotential lines and no dramatic changes In
hydraulic gradient, because ground water is moving at
about the same speed at all points in the aquifer [rregu-
larly spaced contours and differing hydraulic gradients
in different areas of the aquifer indicate lateral changes
In aquifer properties

Preparing a potentiometric map involves plotting water
level measurements on a base map and then drawing
contours In isotropic, porous-media aquifers, the direc-
tion of ground water flow 1s perpendicular to the ground
water contour lines The next section on flow nets de-
scribes in more detail how contour maps can be used to
infer the direction of ground water flow A minimum of
three points 1s required to determine the general direc-
tion of ground water flow Figure 2-9 shows a manual
graphical depiction of ground water contours, drawn
based on water elevations in three wells The difference
In elevation between each well was calculated and di-
vided Into the distance between the wells This distance
was scaled on each line as tick marks that represent a
change in elevation of one-tenth of a foot The lines
connecting the points of equal elevation (27 0 and 27 5
feet in Figure 2-9) are potentiometric contours Ground
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Figure 2-9 The generalized direction of ground water move-
ment can be determmed by means of ihe water level
in three wells of similar depth (from Heath and
Traner, 1981)

water flow direction 1s on the path line perpendicular to
the contours

Figure 2-10 1illustrates a shghtly different approach to
determining the direction of ground water flow from three
well points Steps in this solution involve

1 Identifying the well that has the intermediate water
level

N
Well |
{ head, 26 26m)
¢
\5"
Well 2
(heod, 26 20 m) £
peid
~
7,
Yo
@
well 3
(head, 26 07 m)
0 25 S0 100 METERS
| B 1 1 J

Calculating the position between the well having the
highest head and the well having the lowest head at
which the head 1s the same as that in the intermedi-
ate well

Drawing a straight line between the intermediate well
and the point identified in step 2 This line represents
a segment of the water level contour along which the
total head 1s the same as that in the intermediate
well

Drawing a line perpendicular to the water level con-
tour and through the well with the lowest (or highest)
head This indicates the direction of ground water
movement in an isotropic aquifer

Dividing the difference between the head of the well
and that of the contour by the distance between
the well and the contour This gives the hydraulic
gradient

A large number of well measurements 1s needed to
develop an accurate potentiometric surface map Geo-
statistical methods allow the estimation of water table
elevations in unsampled locations where the water table
1s approximately parallel to the ground surface (Hoek-
sma et al , 1989)

The most important consideration in preparing a poten-
tiometric map s that the water level measurements
should describe a single flow system in an aquifer
Section 2 3 1 describes in detail some commeon pitfalls
in preparing potentiometric maps Worksheet 2-1 pro-
vides a form for compiling well information used to de-
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Figure 2-10 Alternative procedure for determination of equipotential contour and direction of ground water flow in homogeneous,

isotropic aquifer (from Heath, 1983)
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Worksheet 2-1. Water Well Data

Well Data (Attach drillers log):
Location* Screen Interval Depth
Water level data
Date

Level (it)

Pumping Characteristics*

Current non-pumping water level (fest below ground surface)
Current pumping rate (gpm)
Typlcal pumping duration (hours/day)

Current pumping water level (feet below ground surface) ____
Typical nonpumping duration (hours/day) _____

Estimated annual pumpage (pumping rate x hours/day x 365 x 60) =

Specific capacity (pumping rate/(non-pumping water level minus pumping water level) = gpm/ft drawdown*
Estimated transmissivity (specific capacity x 2000) = gpdfit*
Estimated hydraulic conductivity (transmissivity/aquifer thickness) = gpa/it?*
Porosity (%) Ksat** Specific
Aquifer Materlal: ( ) Yield (%)
Unconsolidated Sediments Low ————
. Gravel
— Coarse sand Average
. Medium to fine sand
o Sl High
—_Clay, till
Consolidated Sediments Sources
—.... Limestone, Dolomite Table(s)
—— Coarse, medium sandstone
— Fine sandstone Figure(s)
—— Shals, siltstone
Volcanic rocks
—_.. Basalt
— Acld volecanic rocks
Crystalline Rocks
— Granite/gabbro
— Metamorphic
Aquifer Classification:
Unconfined Confined Number of Aquifers
—Perched ___ Semiconfined ___One
— Regional ___ Highly confined

___>Two (#

)
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Worksheet 2-1 (Continued)

Aquifer Boundaries

Recharge Boundaries Discharge Boundaries
___Interfluv —_ Artesian/pumping well
—._. Losing stream __ Gaining stream
. Lake, pond ___ Drainage ditch
___Sinkholes (karst) . Tile drains
___Injection well —— Sprnings
___Lakes, ponds
___ Ground Water Divide ___ Semiconfined aquifer leakage

Expected water level fluctuations (see Table 2-2)

Moisture regime

___ High moisture (H)*** . Well developed/steep (H)***
—. Moderate moisture (M) ___Moderate/upland (M)
___ Low moisture (L) __ Poor/flat, bottoms (L)
Zone of Aeration (d)

_ d m (H)***

__d=05t0o4m (M)

__d4am()

Diurnalfintermittent Fluctuations Long-Term Fluctuations
— Evapotranspiration ___ Ground water pumpage
. Tidal effects near ocean ___ Deep-well injection

Atmospheric pressure effects __ Artificial recharge

___ Pond, lagoon, landfill leakage

Seasonal Fluctuations __ Agricultural irngation
.. Ground water recharge area —_Agricultural drainage
____ Stream bank storage effects — Geotechnical drainage (open pit mines)

* See Section 3 2 3 for additional discussion of this simple well test for estimating hydraulic conductvity
** Saturated hydraulic conductivity (specify units)
** Rating for expected degree of fluctuation H = high, M = moderate, L = low
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Sidebar 2-1. Distribution of
Transmissivity From Flow Nets

"
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Ed >

Horizontal flow within a segment in a flow net ¢an -
be calculated as (refer to figure above):

qa = TAAHAWA/LA

where .
qa = flow in segment A (m%day) -
Ta = transmissivity in segment A (m%day)

W, = average width of segment
L4 = average length of segment

AH, = drop on ground water level across

segment

The flow in the next segment B 1s similarly calcu-
lated as:

gs = TpAHgWp/Lg _

gl +

Assuming that there is no flow added beiween

segments by recharge (or that recharge is insignifi- -

cant), ga = Qg, allowing combination of the two
above equations and solving to T as follows

Ts = Ta(LsWaAHAL \WpAHR)

which allows calculation of Tg from T,

Measurement or estimation of transmissivity for
one segment (Section 3.2) allows calculation of
variations in T upgradient and downgradient. If
variations in aquifer thickness are known, or can
be estimated, for different segments, variations in
hydraulic conductivity can also be calculated as
follows: .

K

K=Th

where
K = hydraulic conductivity (m/day)
b = aquifer thickness (m)
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velop an potentiometric map This information may
prove helpful in evaluating individual well elevations that
appear to be anomalous This worksheet also includes
(1) a section for recording information on pumping char-
actenistics of the well, which can be used to estimate
transmissivity and hydraulic conductivity from specific
capacity (Section 3 2 3), (2) a section for recording es-
timated aquifer properties (porosity, saturated conduc-
tivity, and specific yield) from the aquifer matrix type
(Section 32 2), (3) a section on aquifer classification
and boundaries for guidance in the selection of sinple
analytical methods (Section 4 4 and 4 5) or computer
models (Section 6 4) for delineation of WHPAs, and (4)
a section for recording information charactenizing the
expected degree of water level fluctuation in a well

2,2.2 Flow Neis

A potentiometric surface map can be developed into a
flow net by constructing flow lines that intersect the
equipotential ines or contour lines at nght angles Flow
lines are imaginary paths that trace the flow of water
particles through the aquifer Although there are an infi-
nite number of both equipotential and flow lines, the
former are constructed with uniform differences in elr
vation between them, while ihe latter are constructed so
that they form, in combinaticn with equipotential lines, a
series of squares A flow net carefully prepared in con-
Junction with Darcy’s Law allows estimation of the quan-
ity of water flowing through an area, and of the
variability of transmissivity and hydraulic conductivity
(Sidebar 2-1) Figure 2-11 illustrates plan and cross-sec-
tion views of flow nets drawn for a gaining stream (2-
11[1]&[2]) and a losing stream (2-11[3]&[4]) Plan view
flow nets are a valuable tool in delineating the zone of
contribution to a well Table 2-3 identifies references that
provide addittonal information on flow net analysts and
case studies that use this method

A standard flow net assumes that the aquifer 1s isotropic
When an aquifer 1s amsotropic, commonly the case in
unconsolidated and sedimentary aquifers, the actual
direction of ground water flow will not be perpendicular
to the equipotential contours Instead, the direction of
flow will deviate from the perpendicular at an angle that
depends on the ratio of the hornizontal to the vertical
hydraulic conductivity ! Figure 2-12 illustrates how an-
isotropy in a fractured rock aquifer alters the direction of
ground water flow compared to that expected in an
isotropic aquifer

1The discussion here assumes that the aquifer Is anisotropic in only
two directions, with the horizontal conductivity greater than the vertical
conduchvity This situation is typical of honizontally layered sediments
(Fetter, 1981) Anisotropy in three directions is possible, but not ame-
nable to simple graphical solutions for determining flow direction
Section 3 3 5 discusses methods for determining anisotropy in three
dimensions
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Figure 2-12. Effect of fracture anisotropy on the orientation of the zone of contribution to a pumping well (from Bradbury et al ,

1991).

Several methods are available for determining the direc-
tion of flow lines where the degree of anisotropy is
known Figure 2-13 illustrates a procedure for transform-
ing a vertical anisotropic flow net to an isotropic section
For potentiometric surface maps, Llakapoulos (1965)
developed a graphical technique for determining this
deviation This techmique uses a “permeability tensor
ellipse,” which has semi-axes equal to the Inverse
square root of the principal permeability values Figure
2-14 illustrates the five-step sequence for using this
method Fetter (1981) provides some additional guid-
ance on using this technique Section 3 35 provides

Flow net element
forms a parallelogram

s

&

Figure 2-13. [lllustration of slow net analysis for anisotropic hy-
draulic conductivity in an earth dam (a) true an-
Isotroplc section with K« = 9Kz, (b) transformed
Isotroplc section with Ky = Kz (from Todd, 1980)
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some guidance on how to determine directional compo-
nents of hydraulic conductivity in an aquifer

Figure 2-15a shows the effect of increasing anisotropy
on the direction of ground water flow using permeabuiity
ellipses for ky/k, ratios up to 9 6 Note that when the ratio
is one (isotropic), a circle results, so that the flow direc-
tion 1s perpendicular to the equipotential ine When the
ratio I1s around 10 to 1 (not uncommon In sedimentary
formations), the flow line diverges almost 45 degrees
from the “expected” direction when the axis of the
equipotential ine I1s at a 45 degree angle to the axis of
maximum permeability Flow direction in an anisotropic
aquifer can be perpendicular to an equipotential line if
the axis of greater permeability in a permeability ellipse
and the equipotential ine are parallel Figure 2-15b
illustrates the effect of changes in the angle of the
equipotential ine with the axis of greater permeability

2.3 Common Errors in Preparation and
Interpretation of Potentiometric Maps

Developing a potentiometric map 1s not as straight-
forward as preparing a topographic map An accurate
potenttometric map requires enough well observations
to develop water table contours that do not miss impor-
tant features of the flow system Considerable interpre-
tation and judgment may be required in developing
contours when well data points do not seem to fit into a
coherent pattern For example, if water level data from
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Figure 2-14 Steps in the determination of ground water flow
directton 1n an anisotropic aquifer (from Feiter,
1981)

wells are drawn from multiple sources, measurements
in nearby wells may have been taken at different times
of the year and may not be directly comparable On the
other hand, if all the data have been collected so as to
minimize effects of short-term or seasonal fluctuations,
examination of individual well characteristics may yield
explanations for anomalous data points For example, a
single well data point that 1s far out of line with nearby
wells may be tapping a different aquifer If an anomalous
well data point cannot be readily explained as being
unrepresentative for any reason, then further field inves-
tigation may be required to determine whether any lo-
calized hydrogeologic conditions are causing the
anomaly
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Figure 2-15 Effect of anisotropy on the direction of flow (a)

changes in ratio of horizontal to vertical conduc-
tivity, (b) change in angle of equipotential line with
axis of greater permeability (from Fetter, 1981)

The rest of this chapter identifies common errors In
contouring water level data and in interpreting the direc-
tion of ground water flow using a potentiometric map
Filing out Worksheet 2-1 for each well in the area of
hydrogeologic Interest may help identify problematic
wells that should not be used for contouring The infor-
mation may also be useful in developing hydrogeologic
interpretations of the resulting potentiometric map
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Flgure 2-16. Effect of well lavel measurements In recharge and discharge areas (a) incorrect contours using well measurements
that do not refiect water table surface, (b) correct contours after elimnation of nonrepresentative well level measure-

ments (from Salnes, 1981)

2.3.1 Contouring Errors

The starting point for a potentiometric map I1s a base
map. The base map identifies well locations and water
level elevations in the well and other surface hydrologic
features, such as streams, rivers, and water bodies
Drawing equipotential contours requires some skill and
judgment Errors in contourning fall into two general cate-
gories* (1) failure to exclude data points that are not
representative; and (2) failure to take into account sub-
surface features that change the distribution of poten-
tiometric head as a result of aquifer heterogeneity or
boundary conditions. The following are six situations in
which contouring errors might occur

1. Failure to exclude well measurements from wells
cased below the water table surface in recharge and
discharge areas For example, only well ¢ in Figure
2-1 gives an accurate reading of the water table
surface Figure 2-16a illustrates distortions in con-
touring that result from this effect, and Figure 2-16b
shows the correct interpretation
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2 Failure to adjust contour lines in areas of topographic
depressions occupied by lakes Figure 2-17a illus-
trates the incorrect and correct interpretations in this
situation

Failure to recognize locally steep gradients caused
by fault zones Figure 2-17b illustrates how conven-
tional contouring methods erroneously portray the
ground water flow systems on the two sides of a fault

Failure to consider localized mounding or depression
of the potentiometric surface from anthropogenic re-
charge or pumping Pumping wells create a cone of
depression around the well (Section 44 2) with
steepened hydraulic gradients Agricultural irngation,
arhficial recharge using municipally treated waste-
water, and artificial ponds and lagoons usually cause
a mounding of water tables When the source of
recharge 1s confined to a relatively small area, a
localized mound develops with elevations increasing
toward the center, rather than decreasing as in a
pumped well Area-wide recharge will reduce hydrau-
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lic gradients compared to natural aquiier conditions
These features are especially significant when they
are located near a ground water diide, because
small shifts in the location of a divide may have a
major impact on the direction in which contaminants
flow

Failure to consider seasonal and other short-term
fluctuations in well levels If an aquifer experiences
seasonal high and low water tables, well measure-
ments are not comparable unless they are taken at
the same time of year Other factors, such as dra-
matic changes in atmospheric pressure and precipi-
tation events, might reduce the comparability of well
measurements even If the measurements are taken
at the same time of year

Use of measurements from wells tapping multiple
aquifers Wells in which the screened interval in-
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Figure 2-17 Common errors in contouring water table maps (a) topographic depression occupied by lakes and (b) fault zones

cludes multiple aquifers generally yield inaccurate
water level or piezometric measurements, because
the measured head reflects the interaction between
heads of the intersected aquifers Figure 2-18 illus-
trates how the failure to differentiate measurements
from wells completed in two aquifers, combined with
a well that connects the two, results in a apparent
depression in the potentiometric surface

2.3.2 Errors in Interpretation of Flow
Direction

As noted earlier, ground water flow is perpendicular o
contours on a potentiometric map If the aquifer Is 1so-
fropic Failure to account for amisotropy and heteroge-
netties In an aquifer, however, can result in significant
errors In the interpretation of ground water flow direction
Following are three situations in which flow direction will
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differ from that indicated by conventional flow net con-
struction using an accurate potentiometric map

1. Homogeneous, anisotropic aquifers Figure 2-12 Il
lustrates how flow direction can diverge from flow in
an isotropic aquifer. Section 2 2 2 discusses how to
determine the direction of flow in this situation
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2 Heterogenous aquifers with contrasting hydraulic
conductivity Figure 2-19 Illustrates an example of
divergence of flow from the direction predicted by
ground water contours as a resuit of a buried channel
of higher permeability oriented across the direction
of the potentiometric surface This kind of divergence
1s difficult to predict accurately Careful examination
of well logs for the areal distribution of materials with
contrasting hydraulic conductivity and the use of
tracer tests may help modify flow direction interpre-
tations when this situation occurs

3 Backwater effects in discharge areas Shori-term re-
verses In the direction of ground water occur when
streams or nvers are ai high stage (Figure 2-20)
These effects can extend for hundreds of feet from
the stream edge Wells that may be subject to bank
storage can be identified by monitoring changes n
water levels in response to stream flood events

2.33 Reverse Flow of Contaminanis

Several situations can cause contaminants to flow in a
different direction from that indicated by flow net con-
struction using a potentiometric map Dissolved con-
taminants follow the direction of ground water flow
Attention should be paid, however, to the possibility of
localized flow patterns that run against the general di-
rection of ground water flow (mounding of ground water
caused by ponds and lagoons and backwater effects in
discharge areas) Dense leachates and non-aqueous
phase lquids (NAPLs), on the other hand, can flow in
an entirely different direction from that of ground water
flow if the slope of the geologic material forming the
base of the aquifer does not follow the potentiometric
surface Figure 1-9 illustrates a dense NAPL flowing in
the opposite direction of ground water flow as a result
of geologic controls
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Chapter 3
Measurement and Estimation of Aquifer Parameters for Flow Equations

All methods for delineation of wellhead proiection areas
(WHPAS) require measurement or estimation of aquifer
properties or parameters that affect ground water flow
Specific delineation methods are discussed In more
detail in the next three chapters This chapter discusses
major aquifer parameters and how they aie measured
or estimated Table 3-1 1dentifies parameters used In
equations for methods covered in Chapter 4 and meth-
ods for measuring or estimating each parameter

3.1 Hydrogeologic Parameters of Interest

Measurement or quantification of parameters, such as
pumping rate, hydraulic gradient, saturated thickness,
and well specifications listed in Table 3-1, is relatively
straightforward Other parameters such as transmissiv-
ity, travel time, and velocity are readily calculated once
values for the parameters from which they are denved
are known This chapter focuses on three critical aquifer
parameters that require relatively sophisticated field or

laboratory procedures for accurate measurement (1)
porosity, (2) specific yield (or storativity for confined
aquifers), and (3) hydraulic conductivity (including an-
1sotropy) Another important aquifer characteristic, het-
erogeneity, involves delineation of spatial variations in
these properties Heterogeneity is discussed further in
Chapter 5 (Hydrogeologic Mapping)

3.1.1 Aquifer Storage Properties: Porosity
and Specific Yield/Storativity

Porosily, expressed as a percentage or decimal fraction,
is the ratio between the openings in the rock and the
total rock volume It defines the amount of water a
saturated rock volume can contain If a unit volume of
saturated rock drains by gravity, not all of the water it
contains will be released The volume drained 1s the
specific yield, a percentage, and the volume retained 1s
the specific retention Therefore, porosity 1S equal to

Table 3-1 Aquifer and Other Parameters Required for Different WHPA Delineation Methods

Parameter Symbol WHPA Delineation Methods* Measurement Methods

Pumping rate of well Q Cylinder rnethod, analytical solutions for pump Estimated or measured at wellhead
tests

Aquifer porosity n Cylinder rnethod, time of travel equations Estimated from tables, measured from

aquifer samples

Open interval or length H Cylinder rmethod Well log

of well screen

Travel time t Calculated fixed radius, time of travel Chosen or calculated for the specified
equations distance

Hydraulic conductivity K Time of travel and drawdown equations Estimated from tables, pumping test.

Saturated thickness b Some time of travel equations, most Potentiometric and geologic logs
drawdown equations

Hydraulic gradient i Time of travel equations, some drawdown Potentiometric map
equations

Velocity v Time of travel equations Calcuated from other parameters, tracer

Specific yield or storativity S
drawdown equations

Drawdown s

Transmussivity
drawdown equations

Some time of travel equations, most

Selected for drawdown equations
Some time of travel equations, most

tests
Estimated from tables, pumping test.

Chosen or calculated from pump test data

Hydraulic conductivity (K) times the aquifer
thickness (b)

* Cylinder method Is discussed in Section 4 3 2, time of travel methods are covered in Section 4 4 and drawdown methods in Section 45



specific yield plus specific retention Knowing any two of
these terms allows calculation of the third !

Figure 3-1 shows graphs of the relationship between
porosity, specific yield and specific retention for uncon-
solidated materials with texture ranging from clay and
silt to gravel. Porosity and specific yield of alluvial, un-
consolidated aquifers can be estimated from these fig-
ures if particle size data are available Figure 3-1a
requires knowing the grain size at which the cumulative
total, beginning with the coarsest material, reaches 10
percent of the total sample Figure 3-1b is based on the
median grain size Both of these particle size parame-
ters can be determined from conventional particle-size
distribution analysis Figure 3-2 can be used to estimate
specific yield in unconsolidated materials if only the
sand, sllit, and clay percentages are known
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Flgure 3-1. Porosity, specific yield, and specific retention (a)
mean curves for South Coastal Basin in the Los
Angeles area of California (adapted from Todd,
1959, by Devinny et al, 1990), (b) alluvium from
large valleys (from Davis and DeWiest, 1966, using
various sources)

1 This includes only interconnected pores through which water can
flow. Isolated poraes, whether air- or water-filled, can be considered
part of the solid volumse of a rock for purposes of ground water flow
analysis

200001 to 000001 may also be cited in the literature as a typical
range
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EXPLANATION

S
Line of equal specific yleld
Interval 1 and § percent
Particle size {mm)

Sand 2-0 0625
Silt 00625-0 004

Silt size {percent)

Figure 3-2 Textural classification triangle for unconsolidated
materials showing the relation between particle size
and specific yield (from Morris and Johnson, 1967)

As discussed in Section 2 1 4, the presence of secon-
dary porosity complicates ground water flow analysis,
and the relative proportions in relation to total porosity
must be measured or estimated where secondary po-
rosity contributes significantly to ground water flow Ta-
ble 3-2 identifies measured or “typical” values/ranges of
porosity for a variety of aquifer materials The data from
Heath (1983) and Brown et al (1983) provide some
information about the relationship between primary and
secondary porosity, which rarely exceeds 10 percent
However, this percentage may account for most of the
actual flow of ground water Figure 3-3 provides some
additional information on the characteristics of secon-
dary porosity in different types of rocks

Another important term s sforativity (S), which de-
scribes the quantity of water that an aquifer will release
from storage or take into storage per unit of its surface
area per unit change in head In unconfined aquifers, the
storativity 1s, for all practical purposes, equal to the
specific yield Table 3-3 identifies measured or “typical”
values/ranges of specific yield for a vanety of aquifer
materials The storativity of confined aquifers 1s substan-
hally smaller, because the water released from storage
when the head declines comes from the expansion of
water and compression of the aquifer, both of which are
very small For confined aquifers, storativity generally
ranges between 0 005 and 0 00005, with leaky confined
aquifers falling in the high end of this range ? The small
storativity of confined aquifers means that a large pres-
sure change throughout a wide area is needed to obtain
a sufficient supply from a well This 1s not the case with
unconfined aquifers, because the water derived i1s not



Table 3-2 Porosity (% of Volume) of Different Aquifer Matenals

Soil/Rock Types (1) p/s* (2) PIS* 3y @) 5) 6) (7)Y

Unconsolidated Sediments

Gravel 20/- 30-40/- 237-441 25-40 25-40
Coarse 20-35
Medium 20-35
Fine 20-40

Sand and gravel 20-35

Sand 25/- 26 0-53 3 25-50 15-48
Gravelly 20-35
Coarse 30-40/- 25-45
Medium 25-45
Medium to fine 30-35/-

Fine 25-55
Dune sand 35-45

Silt 40-50/yes** 339-611 35-50 35-50 35-60

Clay 50/- 45-55/yes** 34 2-56 9 40-70 40-70 35-55
Sandy 30-60

Till 45-55/yes*™ 25-45

Unstratified dnft 221-406

Stratified drift 34 6-59 3

Loess 44 0-57 2 60-80

Peat 60-80

Soil &5/-

Alluvium 10-40(30)
Basin fill 5-30(20)
Ogalla formation ) 15-45(35)

Consolidated Sediments

Limestone 10/10 1-50/yes** 66-557 0-20 0-20 5-55 1-20(4)
Karst 5-50 5-50
Chalk 5-40

Dolomite 1-50/yes** 191-327 0-20 0-20

Sandstone 137-493 5-30 5-40 1-20(10)
Semiconsolidated 1071 1-50
Coarse, medium <20/yes**

Fine, argillite <10/ygs**

Siltstone -lyes*™ 212410 20-40

Shale -lyes** 1497 0-10 0-10

Crystalline Rocks

Granite (unaltered) <01 0-2

Crystalline (fractured) 0-10

Crystalline (dense) 0-5 0-5

Ignheous/Metamorphic -/yes**

Weathered 40-50
Unaltered gneiss 0-2

Quartzite 0-1

Slates/mica schists 0-10

Volcanic Rocks

Basalt 1071 -/yes*™
Fractured 5-50 5-50 5-50

Volcanic tuff 30-40 10-40

Acid volcanic rocks -

* P = pnimary porosity, S = secondary porosity

** Rarely exceeds 10 percent '

*** Compiled by Barton et al (1985)

**** Number in parentheses 1s typical value

Sources (1) Heath (1983), (2) Brown et al (1983), (3) Morris and Johnson (compiled by Barton et al, 1985), (4) Freeze and Cherry (1979),
(5) Sevee (1991), (6) Devinny et al (1990), (7) Wilson (1981)
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Porosity Permeability range (em/sec) Well yields T c
Rock types water b}ﬁ-i:g unit
Prunary Secondary 102 100 102 104 104 108  High Medium Low
(grala) (fracture)t
b4
Sediments, unconsolidated
Gravel 30-40 —_— Aquifer
Coarse sand 30-40 e Aquifer
Med{um to fine sand 30-35 B — Aquifer
Silt 40-50 Occasional B —— ————  Aquiclude
Clay, till 45-55 Rare (mud cracks) —— — . Aquiclude
Sedimeants, consolidated
Limestone, dolomite 1-50 Solution joints, Aquifer or, aquifuge
planes
Coarse, medium sandstone < 20 Joints and Aquifer or aquiclude
fractures
Fine sandstone, argillite < 10 Joints and fractures ———  Aquifer or aquifuge
Shale, siltstone — Joints and fractures -~ Aquifuge or aquifer
Volcanic rocks
Basalt — Joints, fractures Aquifer or agufuge
Acid volcanic rocks —_— ———— Agquifuge or aquifer
Crystalline rocks
Plutonic and ‘Weathering and Aquifuge or aquifer
metamorphic fractures
decreasing as depth
ncreases

1 Rarcly excoods 10 per cent.

Figure 3-3. Porosity, permeability, and well yields of major rock types (from Brown et al , 1983)

related to expansion and compression, but instead
comes from gravity drainage and dewatering of the
aquifer

3.1.2 Water-Transmitting Properties:
Hydraulic Conductivity and
Transmissivity

The terms permeabiiity (P) and hydraulic conductivity
(K) are often used interchangeably to refer to the ease
with which water moves through soil or an aquifer under
saturated conditions Hydrogeologists draw a distinction
between nirinsic permeability (k—a property of the po-
rous medium alone that 1s independent of the nature of
the liquid or potential field) and hydraulic conductivity
(K—a function of both the medium and the flud flowing
through it) A precise definition of hydraulic conductivity
is:

The quantity of water that will flow through a unit
cross-sectional area of a porous matenal per unit of
time under a hydraulic gradient of 1 0 (measured at
right angles to the direction of flow) at a specified
temperature (Nielsen, 1991)

The terms hydraulic conductivity and permeability in this
handbook refer to saturated hydraulic conductivity un-
less otherwise specified Soil permeability rates are typi-
cally reported In units of inches/hour based on
percolation tests Hydraulic conductivity may be re-
ported in a varety of units pum/second, cm/second,
m/second, ft/day, and gpd/it® (gallons per day per
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square foot) Currently, centimeters per second 1s prob-
ably the most commonly used unit Hydraulic conductiv-
ity values range widely from one rock type to another
and even within the same rock Table 3-4 shows meas-
ured ranges of hydraulic conductivity for various uncon-
solidated and consolidated sediments and typical values
for unconsolidated materials for which the unified soll
classification 1s known

Figures 3-3 to 3-6 show ranges of hydraulic conductivity
and permeability from a number of different sources
Note also that Figures 3-4 and 3-5 provide nomographs
for approximate conversions between different units of
intrinsic permeability (k) and hydraulic conductivity (K)
Figure 3-7 can be used to estimate hydraulic conductiv-
ity of unconsolidated materials based on general classi-
fication (Figure 3-7a) from particle-size distribution
curves of alluvial sands (Figure 3-7b)® and from median
grain size of stratified dnft aquifers (Figure 3-7c)

3To use the nomograph 3-7(b)(i), on the nght-hand side of Figure
3-7b, the particle-size distribution curve 3-7(b)(1) must be plotted using
p units, where p =-logad, d being the grain size diameter in mm The
inclusive standard deviation must also be calculated as follows

o1 = (d16 — dsa)/4 + (ds — dgs)/6 6
where the subscripts for d (in p units) represent the cumulative per-
centage finer than that diameter

Figure 3-7(b) provides an dlustrative example Median grain size
dsg Is first determined from the particle-size curve, 3-7(b)(t) (2 0 n the
example) The inclusive standard deviation (calculated from the data
used to plot the curve) in the example (0 8) has been interpolated
between the curves in the nomograph on the right, 3-7(b)(n), yielding
an approximate K of 0 7 cm/min



Table 3-3 Specific Yield (%) for Different Aquifer Matenals

Soill/Rock Types (1) (2) Mean (2) Range ) 4) (5)
Unconsolidated Sediments
Gravel 19 15-30
Coarse 21 13-25 10-25
Medium 24 17-44 15-25
Fine 18 13-28 15-35
Sand and gravel 15-25 15-30
Sand 22 10-30
Gravelly 20-35
Coarse 30 18-43 20-35
Medium 32 16-46 15-30
Fine 33 1-46 10-30
Dune sand 38 32-47 30-40
Silt 20 1-39 1-30
Loess 18 14-22 30-50
Clay 2 6 1-18 1-10 1-20
Sandy 1-30
Till 5-20
Peat 30-50
Soil 40
Alluvium 1-25(15)
Basin fil 1-30 (15)
Ogalla formation T 1-30(20)
Consolidated Sediments -
Limestone/Carbonate 18 14 0-36 055 1-24 1-5(2)
Sandstone 5-15
Semiconsolidated 6 1-48 0 1-5(1)
Medium 27 12-41
Fine 21 2-40
Siltstone 12 1-33 1-35
Shale 055
Volcanic Rocks
Basalt 8
Fractured 1-30
Tuit 21 2-47 2-35
Crystalline Rocks
Granite 009
Schist 26 22-33
Crystalline (dense) 0-2
Igneous/Metamorphic
Weathered 20-30

Sources (1) Heath (1983), (2) Morns and Johnson (1967), as complied by McWhorter and Sunada (1977), (3) Sevee (1991), (4) Devinny et

al (1990), (5) Wilson (1981)

Alarge number of empirical equations have been devel-
oped to estimate hydraulic conduchivity based on texture
(particle size distribution) of unconsolidated matenals
Alyamani and Sen (1993), Bedinger (1961), Cosby et al
(1984), Hazen (1893), Hendry and Paterson (1982),
Horn (1971), Krumbein and Monk (1942), Puckett et al
(1985), Uma et al (1989), Vukovic and Soro (1992),
Wiebenga et al (1970) Figure 3-7d illustrates a particle
size distnbution plot and five of these empincal equa-
tions Such equations can be a useful supplement to
other measurements or estimates of hydiaulic conduc-
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tivity, but should be used with care Bradbury and Mul-
doon (1990) found that application of the five equations
to unlithified glacial and fluvial materials provided esti-
mates of hydraulic conductivity that spanned three or
four orders of magnitude for any given lithostratigraphic
unit Each method 1s most applicable for the type of
unconsolidated material used to derive it and should not
be extended to other types of matenial without field tests
to venfy the results

Figure 3-8 shows the range of measured permeabilibes
of glacial tills in various locations McKay et al (1993)



Table 34 Representative Values for Hydraullc Conductivity
of Unconsolidated and Consolidated Sediments

Hydraullc IGNEOUS AND METAMORPMIC ROCKS
ROCk/SO" Conductlvlty Unfroctured sASALT Fractured
'“IP" (cmls) Unfroctured Froctured Leva flow
SARDSTONE
Unconsolidated Matenals* “a Fractured Semecansolidated ’
vael 31to3 4X102 Uniuchr!d“ = Fractured
(repacked) CARBONATE ROCKS
Sand 9 0x10%2 to 4 7x10€ Fractured Covernous
sitt 7 1x10° to 9 4x10°? cLav SILT, LOESS
Clay 14x10°® to 1 4x10? SILTY_SAND
Unstratified drift 1 0x10? to 3 8x10° CLEAN SAND
Stratified drift 66x10" to 4 7x10° o ceerme
LOGSS 1 8x10-4 to 47)(10'6 GLACIAL TILL GRAVEL
Sedimentary Rocks* Y S S T S W SR S S
Sandstone 10x102to 37x107 0% 107 10° 10% 107 w03 0W0' 10 10 103 10*
Siltstone 14x10% to 94x10 1 . . . , . ."“’ . . , ) ) )
Shala - 107 10°% 1075 10"t 10°% 107t 10 1 10 162 10 104 t0?
Umestone 26x102 to 1 0x10°® frd
Dolomite 3 3x10° to 3 8x10° lol" mJ ¢ lo" 107 10? m" |o." ; ||o |o" m” IO" IO.’
Unifted Soll Classification** gal d -
aw Well graded gravels, 102
gravel-sand mixtures, Ittle or no
finas Figure 3-4 Hydraulic conduciivity of selected rocks (from
@GP Poorly graded gravels, 102 Heath, 1983)
gravel-sand mixtures, little or no
fines
aM Silty gravels, gravel-sand-silt 10% to 108
mixtures
GC Clayey gravels, gravel-sand-clay 10€ to 10® Rocks |Unconsoldated £ k K K K
mixtures -— deposits (darcy) {(em® (em/s) {m/s) (gal/doy/t1?)
sw Well graded sands, gravelly 10°% | 05 103 10?2 pi
sand, little or no fines 108
SP Poorly graded sands, gravelly 103 5 ot 104 10 Fi0
sands, little or no fines 2 . " , p10°
SM Siity sands, sand-silt mixtures 10° to 10% [] | T A R S »
SC Claysy sands, sand-clay 10°€ to 10® 8% :5: L102 L10°¢ 107! 1078 i
mixtures 83 1107
E - R |2 L10~%
ML Inorganic silts and fine sands, 10° to 10° - § [0 [Tt re .
siity or clayey fine sands or fasz 2 |, Lot kwo® bos [©
clayey silts with slight plasticity TE gs g| o
cL Inorganic clays of low to 10% to 10°® &g = Lo |10 |10 1078
medium plasticity, gravelly BES. 51’ P R U R Y
clays, sandy clays, silty clays, Z86EL 8 F10™ 10T 10T 10 ‘
EZSS = - 10°
lean clays El = - Lo Fio fioe Fros [P0
oL Organic silts and organic silty 10* to 10% - 8 =] o2
clays of low plasticity I | 2 -10™* L1072 L1077 [-107°
[=]
MH Inorganic slits, micaceous or 10* to 10°® £23 sl us! 8| oo F107°
diatomaceous fine sandy or siity RS (107 1077 107 10 3
solls, elastic siits Bgﬂ gg o6 LigtLio® Lot [ 10
CH Inorganic clays of high plasticity,  10° to 10® 5881-¢ 05
fat clays §§§ s | L1077 1075} 1070 L0712
OH Organic clays of medium to 10% to 10® §§ ";_"T s Lol iy Lyt [ 10°®
high plasticity, organic silts g% -107 ~107 10 .
Pt Peat and other highly organic Not classified I - 10
solls

Hydraulic Conductivity of Selected Rocks

* Compiled from Morris and Johnson (1967) by Barton et al (1985)
** Complled by Brown et al (1991) from SCS (1990)
Figure 3-5 Range of values of hydraulic conductivity (from
Freeze and Cherry, 1979)
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found that field measurements of hydraulic conductivity

g |reaer |10°[ 10" 10| o' 0’| 4 1497} 10716} 1016™] 16 10 10°) 10 in glacial till were generally two to three orders of mag-
emtses | 10°] 10%] 10'] 1 | 101 10716710 10"} 10 167 16%]10*}10 'Y +&" nitude higher than laboratory measurements on cores
1 arstlc imeston This study also found that field values measured In
actired {gnaous and conventional augered piezometers were typically one to
BT two orders of magnitude lower than those measured in
shale and rudstons
8 piezometers designed to reduce smearing

massive igneous and
metamorphic rocks

If the porosity and texture of a consolidated sandstone

Geologic Materials

o aquifer I1s known, Figure 3-9 allows estimation of perme-
tands ability in milldarcys (see Figure 3-5 for nomograph to

sits convert darcys to hydraulic conductivity values) Section

clay 3 3 describes the use of these fables for estimating

hydraulic conductivity from geologic data

Figure 3-6 Representative ranges of saturated hydraulic- Transm:ss:wty (T)’ a term derved from hydraulic con-
conductivity values for geologic materials (adapted  dUcCtivity, describes the capacity of an aquifer to transmit
from Freeze and Cherry, 1979, by Thompson etal,  water Transmussivity IS equal to the product of the aqui-

1989) fer's saturated thickness (b) and the hydraulic conduc-
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Figure 3-7 Saturated hydraulic conductivity of unconsolidated materials (a) various materials (from Klute and Dirksen, 1986), (b)
determination from grain-size gradation curves for sands (Freeze and Cherry, 1979, after Masch and Denny, 1966), (c)
relationship between grain size and hydraulic conductivity in stratified drift aquifers (Connecticut Department of Envi-
ronmental Protection, 1991, (d) sample particle-size distribution curve and five empirical equations used to estimate
hydraulic conductivity of unconsolidated materials D50 = median diameter, in millimeters, D10 = diameter, in millimeters,
at which 10% of the sample Is finer, Dm = mean diameter, in millimeters, oy = phi standard deviation, %sa = percentage
of the sample coarser than 0 05 mm, %cl = percentage of the total sample finer than 0 002 mm (Bradbury and Muldoon,
1990)
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tivity (K) It 1s commonly measured m units of gpd/ft of
aquifer thickness

T=Kb

= (3-1)
Krasny (1993) has recently described a standard clas-
sification scheme for transmissivity of local and regional
aquifers based on magnitude and variation

3.1.3 Darcy’s Law

Darcy’s Law, expressed in many different forms, allows
calculation of the quantity of water flowing through a
defined area of an aquifer, provided that the hydraulic
conductivity and the hydraulic gradient are known One
means of expressing Darcy’s Law Is
Q= KA (3-2)

where

Q = quantity of flow per unit of ime, in gpd

K = hydraulic conductivity, in gpd/ft?

1 = hydraulic gradient, in ft/ft
A = cross-sectional area ihrough which the flow
occeurs, In ft2

Darcy’s Law assumes that flow is laminar, which means
that the water will follow distinct flow lines rather than
mix with other flow lines Most ground water flow in
porous media I1s laminar The equation does not work for
turbulent flow, as in the case of the unusually high
velocity that might be found in fractures or solution
openings or adjacent to some pumping wells

Figure 3-10 shows an example of the use of Darcy’s
Law In this case, a sand aquifer about 30 feet thick lies
within the flood plain of a nver about 1 mile wide The
aquifer 1s covered by a confining unit of glacial till, the
bottom of which 1s about 45 feet below the land surface

Wel 1 Well 2
“8'
Rvd Y 18
Glacial Till
(Clay) 45° \v4 A
N =~ R =1 . .
', L == N MR — R
LR .' - L Sand 30’ . E 0 .
g T e = Shalt T =T - -— -:—:

Figure 3-10 Using Darcy’s Law to estimate underflow in an

aquifer



The difference in water level in two wells 1 mile apari. is
10 feet, and the hydraulic conductivity of the sand 1s 500
gpd/it? Therefore, the quantity of underflow moving
through the cross-section in Figure 3-10 1s

Q = KiA = 500 gpd/ft® x (10 /5280 ft) x (5280 x 30) =
150,000 gpd

Ground water moves through both aquifers and confin-
ing units Because hydraulic conductivity commonly dif-
fers between aquifers and confining units by several
orders of magnitude, the head loss per unii of distance
In an aquifer is far less than in a confining unit Conse-
quently, lateral flow in confining units 1s small compared
to that in aquifers, but vertical leakage through them can
be significant Because of the large differences in hy-
draulic conductivity, flow lines in aquifers tend to parallel
the boundaries, but in confining units they are much less
dense (Figure 3-11) The flow lines are refracted at the
boundaries to produce the shortest flow path in the
confining unit, with the angles of refraction proportional
to the differences in hydraulic conductivity

3.2 Estimation of Aquifer Parameters

The cnitical aquifer parameters of porosity, specific yield,
and hydraulic conductivity are typically not measured for

most water wells Therefore, the initial stages of the
wellhead protection delineation process often require
estimation for one or more of these parameters Estima-
tion requires some knowledge of the geologic character
of the aquifer and data on the ranges or typical values
that have been measured in similar settings elsewhere
When used cautiously, such estimates can increase the
effectiveness and reduce the cost of any required field
measurements and additional data collection

3.2.1 Estimation From Soil Survey Data

When aquifers are in unconsolidated deposits and the
water table I1s relatively near the surface, soil surveys
published by the Soil Conservation Service (SCS) of the
U S Department of Agriculture are an excellent source
of information about the character of subsurface mate-
nials and soil hydrologic properties A two-page soll se-
rnes description sheet and a two-page soll survey
interpretation sheet are available for every established
soil series In the United States Table 3-5 summarizes
the information that 1s available from these records The
table highlights in bold-face type the information that
may be useful for geologic and hydrogeologic interpre-
tations

SCS soils surveys typically do not provide any detailed
information deeper than 5 feet below the ground sur-
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Figure 3-11
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Ground water flow and equipotential lines as a function of different hydraulic conduchivity (from Heath, 1983)



Table 3-5. Types of Data Available on SCS Soil Serles
Dascription and Interpretation Sheets

Soll Serles Description Sheet
Taxonomic class

Typical soll proflle description
Range of characteristics
Geographlc setting
Geographically assoclated solls
Dralnage and permeabillity

Use and vegetation

Distribution and extent

Location and year seties was established
Remarks

Avallability of additional data

Soll Survay Interpretations Sheet*
Estimated soll properties (major horizons)
Texture class (USDA, Unified, and AASHTO)
Particle size distribution
Liquid limit
Plasticity index
Molist bulk density (g/cm?®)
Parmeabillity (in/hr)
Avallable water capacity (in/in)
Soil reaction (pH)
Sallnity (mmhos/cm)
Sodium absorbtion ratio
Cation exchange capacity (Me/100g)
Calclum carbonate (%)
Gypsum (%)
Organic matter (%)
Shiink-swell potential
Corrosivity (steel and concrete)
Eroslon factors (K,T)
Wind erodabillity group
Flooding (frequency, duration, months)
High water table (depth, kind, months)
Cemented pan (depth, hardness)
Bedrock (depth, hardness)
Subsidence (initial, total)
Hydrologlc group
Potential frost action

Use/Suitability ratings
Santtary facilitles
Source material
Community development
Water management
Recreation
Crop/pasture capability and predicted yields
Woodland suitability
Windbreaks (recommended species for planting)
Wildiife habitat suitability
Potential native plant community (rangeland or forest)

Note Boldface entries are particularly useful for evaluating contami-
nant transport
* Units indicated are those used by SCS
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face, but they do provide a general indication of the type
of deeper geologic materials In the absence of, or in
combination with, other geclogic data about the area of
interest, this information provides a basis for estimating
porosity, specific yield, and hydraulic conductivity, as
discussed in the next section

If a published SCS soil survey Is available for a site of
interest, the information in Table 3-5 will be contained in
the report, but scattered in different locations It 1s prob-
ably useful to obtain the single soil series descriptions
and Interpretations (usually available from the SCS
State Office as a four-page handout) as a convenient
consolidated reference for the soil series of interest This
sheet should be checked against data in the published
soll survey, however, since the soil survey often will have
additional data specific to the county in question

3.2.2 Estimation From Aquifer Matrix Type

Porosity, specific yield, and hydraulic conductivity fall
within reasonably well-defined ranges for most aquifer
materials, although some rocks, such as basalt, encom-
pass the entire natural range of hydraulic conductivity
(see Figure 3-3) The following tables and figures pro-
vide information compiled from a variety of sources

Porosity Table 3-2 and Figure 3-1

Specific Yield Table 3-3 and Figures 3-1 and 3-2

Hydraulic Conductivity Table 3-4, Figures 3-2 through
3-9

Sources may differ somewhat in the ranges given for a
specific aguifer matenal These differences probably
exist because of shight differences in the way the mate-
nal has been defined, or because different sets of data
measurements were examined Worksheet 2-1 (water
well data) provides space for compiling information on
aquifer characteristics Below are some guidelines for
estimating porosity, specific yield and hydraulic conduc-
tivity for a specific WHPA

1 Define the nature of the aquifer matenal as thor-
oughly as possible, using available well logs, soil
surveys, geologic maps, and hydrogeologic maps

On the well data worksheet, enter values (or ranges)
for porosity, specific yield, and hydraulic conductivity
from all sources In the tables and figures identified
above that provide data on similar or related aquifer
materials

If the sources provide different ranges for the same
materal, review the tables and/or figures again to
see If any subtle distinctions in the way the materials
are described might make one more approprate for
the aquifer in question

Select a range of values that seems reasonable
based on the information available, and enter the
range In the well data worksheet For aquifer mater-



als with a wide possible range, the range should be
narrowed based on the presence or absence of char-
actenistics that tend to increase or decrease the pa-
rameter in question (Table 3-6)

Table 3-6 Aquifer Characteristics Affecting Porosity, Specific
Yield, and Hydraulic Conductivity

Parameter Tendency To Increase Tendency To Decrease
Porosity Well sorted (same size) Poorly sorted

Rounded particles Irregular-shaped

particles

Stratified Unstratified

Small particle size Large particle size

Unconsolidated Cemented/ithufied

High secondary porosity Low secondary porosity
Specific Yield Sand particle size Gravel, silt, clay

High secondary porosity Low secondary porosity
Hydraulic Gravel, sand Clay
Conductivity

Well sorted (same size) Poorly sorted

Stratified Unstratified

Unconsolidated Cemented/lithified
High secondary porosity Low secondary porosity

Table 3-6 identifies factors that tend to increase or de-
crease porosity, specific yield, and hydraulic conductiv-
ity Interactions between factors may mitigate or offset a
given tendency Many of the same factors tend to In-
crease and decrease all three factors, but there are
some Interesting differences Porosity tends to decrease
as particle size increases, whereas the reverse Is true
for hydraulic conductivity This 1s because clays have a
high porosity, but the size of pores 1s so small that water
moves very slowly Specific yield, on the other hand, 1s
typically highest in sandy matenals and generally de-
creases with larger and smaller particle sizes This i1s
because as particle size increases to gravels, the pore
space avaitlable to store water decreases, and as parti-
cle size decreases, water drains less readily from the
smaller pores

3.2.3 A Simple Well Test for Estimating
Hydraulic Conductivity

The next section describes more complex well tests for
measuring aquifer parameters, but a rough estimate of
hydraulic conductivity 1s possible if three easlly meas-
ured parameters are known (1) the static water level
prior to any pumping, (2) the normal well pumping rate,
and (3) the level to which water drops aiter pumping
starts and stays when inflow into the well equals the
pumping rate Drawdown 1s the difference between the
static level and the level to which the water drops during
pumping The discharge rate of the well divided by the
drawdown 1s the specific capacity, not to be confused
with specific yield (Section 3 1 1) The specific capacity
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indicates how much water the well will produce per foot
of drawdown |t can be calculated by the following equa-
tion
Specific capacity = Q/wd (3-3)
where
Q = discharge rate, in gpm
wd = well drawdown, In ft (elevation of static water
surface - elevation when pumped)

If a well produces 100 gpm and the drawdown Is 8 feet,
the well will produce 12 5 gpm for each foot of avatlable
drawdown Multiplying specific capacity by 2,000 gives
a crude estimate of transmissivity (T = 2,000 x specific
capacity), which in turn can be used to estimate hydrau-
lic conductivity by rearranging equation 3-1

K = T/b = 2,000 x specific capacity/b  (3-4)
Transmissivity estimates based on specific capacity
measurements, however, are commonly low because of
well construction details (e g, screen length is less than
the thickness of the aquifer) Worksheet 2-1 contains
space for recording information for calculating the spe-
cific capacity of a well

3.3 Field Measurement of Aquifer
Parameters

Detailed discussion of field methods for measuring aqui-
fer parameters i1s beyond the scope of this handbook,
but this section provides a general discussion of major
field methods Table 3-7 provides summary information
on more than 30 specific aquifer test techniques * These
are broadly grouped into (1) shallow water table tests,
(2) well tests, (3) tracer tests, and (4) other techniques
Each group 1s discussed briefly below

3.3.1 Shallow Water Table Tests

All the techniques In Table 3-7 for shallow water table
measure hydraulic conductivity The auger hole method
Is the most widely used This method involves boring an
open hole below the water table, removing water, and
measuring the water level at intervals untl water
reaches the original level Other methods may be more
appropriate for different site conditions This type of test
is generally not suitable for purposes of WHPA deline-
ation, because It requires a water table near the surface
and measures only hydraulic conductivity of the upper
part of the aquifer An exception may be in areas where
potential contamination from agricultural chemicals in
the wellhead area 1s a concern Because the tests are

4 The section and table references in Table 3-7 refer to sections and
tables in the EPA guide from which the table is taken (U S EPA, 19983)
containing additional information about the techniqua This guide is
available from EPA's Center for Environmental Research Information



Table 3-7. Summary Information on Aquifer Test Methods

Aquifer

Confined/ Porous/ Properties Chapter
Technlque Unconfined Fractured Measured Section? Table®
Shallow Water Table
Auger Hole Unconfined Porous K (horizontal)* 421 4-5, 72
Pit Baling Unconfined Porous** K (undefined) 421 4-5
Pumped Borehole Unconfined Porous K (undefined) 421 4-5
Plezomster Unconfined Porous K (undefined) 422 4-5, 72
Tube Unconfined Porous** K (vertical) 422 4-5
Well Point Unconfined Porous K (undefined) 422 4-5
Two-Hole Unconfined Porous K (undefined) 423 4-5
Four-Hole Unconfined Porous K (undefined) 423 4-5,7-2
Muitiple-Hole Unconfined Porous K (undefined) 423 4-5
Drainage Outflow Unconfined Porous K (undefined) 423 4-5
Well Tests
Slug (Injectiorn/Withdrawal) Both Porous KHT 431 4-5
Slug (Displacement) Both Porous KHT 431 4-5
Singla-Well Pump Both Porous K ST 432 4-5
Muitiple-Well Pump Both Porous AK S, T 432 4-5
Single Packer Both Both KHT 433 4-5
Two-Packer** Both Both KHT 433 45
Tracers
lons Both Both D,FRV 441 4-3
Dyes Unconfined Both D,FV 442 4-3, 4-6
Gases Unconfined Both D,ERV 443 4-3
Stable Isotopes Both Both D,ER,V 444 4-3, 4-6
Radioactive Isotopes Both Both D, F R, V, T 445 4-3, 4-6
Water Temperature Unconfined Both D,FV 446 4-3
Particulates/Microorganisms Unconfined Both D,FRV 447 4-3, 4-6
Cther Tochniques
Water Balance Unconfined Both R 451 4-5
Molsture Profile Unconfined Porous S 452
Shallow Geothermal Unconfined Porous FR 162
Fluld Conductivity Log Both Both F 313
Neutron Activation Both Both FEHV 335
Differential Temperature Log Both Both F 352
Flow Meters Both Both FEHV 353355
Single-Well Tracer Methods Both Both FEHV 356
Other Borehole Methods Both Both H Section 3
Plezometric Map Both Both FH 41

® Chapter section and tables covering topic in US EPA (1993)

Boldface = most commonly used methods
A = anisotropy; D = dispersivity; F = flow direction, H = heterogeneity, K = hydraulic conductivity, R = recharge/age, S = specific storage/yield,
T = Transmissivity; V = Velocity

* Directional ratings are qualitative in nature Different references may give different ratings depending on site conditions and criteria used to
define directionality For example, U S EPA (1981) and Hendrickx (1990) note that this method often measures primarily horizontal conductivity,
whereas Bouma (1983) indicates that the direction 1s undefined (see Figure 7-2)

** Can be used in rocky soils, other methods generally require fine-grained soils

“** Can be used to measure saturated hydraulic conductivity both above and below the water table in open holes in consolidated rock

*+*+ Actual uses are much more restricted due to health concerns
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relatively fast and inexpensive, they may be useful for
measuring vanations in hydraulic conductivity in the
wellhead area with a shallow water table

3.3.2 Well Tests

Well tests are the most common and versatile methods
for directly measuring aquifer parameters They fall into
three main categories (1) single-well slug tests, (2)
pumping tests (single and multi-well), and (3) packer
tests (single- and two-packer) Siug tests involve meas-
urning the rate at which water in a well returns to its initial
level after (1) a sudden injection or withdrawal of a
known volume of water from a well, or (2) instantaneous
displacement by a float, weight, or change in pressure
Pumping tests involve removing water from a well over
a pernod of time from days to possibly weeks and meas-
uning the changes in water levels in the pumping well
(single-weli test) and adjacent monitoring wells (multi-
ple-well test) Packertests are used to measure hydrau-
hc conductivity In isolated sections of a borehole by
monitoring the time-pressure response of the aquifer
section when water is injected The data from well tests
are plotted and matched against curves calculated using
analytical solutions to ground water flow appropriate for
the well construction and aquifer characteristics (Sec-
tion 4 5)

As Table 3-7 indicates, all well tests measuie hydraulic
conduchvity, but the types of other aquifer parameters
that can be obtained from these tests vary Slug and
packer tests provide information on relatively small por-
tions of an aquifer, but are relatively easy to conduct and
consequently are well-suited for characterizing aquifer
heterogeneity Pumping tests are more compiex and
difficult to carry out, but provide information on a larger
portion of the aquifer Pumping tests are the only well
test method that provides mnformation on the aquifer
storage properties of an entire aquifer

A key element of aquifer testing i1s the selection of an
appropriate analytical solutton, or type curve developed
from an analytical solution, to analyze the test data
Characteristics of the aquifer should not viclate the as-
sumptions used In developing the analytical solution
Checklist 4-1 should be used to identify key aquifer
characteristics that affect aquifer test results ASTM
(1991) provides guidance on the selection of aquifer well
test methods Figure 3-12 provides a decision tree for
the selection of methods covered in that guide Table 3-8
provides an index of references that give analytical so-
lutions to aquifer test data according to pump test con-
ditions and type of test This table includes quite a few
references not cited in ASTM (1991) and 15 most likely
to be useful when aquifer conditions depart significantly
from assumptions in the most commonly used analytical
methods (Sections 4 4 and 4 5)
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Well test methods are best suited for porous media, and
most methods tend to give misleading results where
fracture or conduit flow 1s an important component of
ground water flow Section 542 discusses how the
response of an aquifer to pumping can be used to
evaluate whetner fracture flow 1s a significant compo-
nent of flow In an aquifer

3.3.3 Tracer Tests

Ground water tracers are primanily used to identify the
source, direction, and velocity of ground water flow and
the dispersion of contaminants Depending on the type
of test and the hydrogeologic conditions, other parame-
ters, such as hydraulic conductivity, porosity, chemical
distribution coefficients, source of recharge, and age of
ground water can also be measured Any detectable
substance that can be injected into the subsurface and
travel In the vadose or saturated zone can serve as a
tracer Table 3-9 identifies more than 60 substances that
have been reported or suggested as tracers in ground
water studies Any contaminant that 1s detected in
ground water functions as a tracer, provided that the
onginal source ts known

Table 3-9 groups tracers Iinto seven major categories
and provides some summary information on uses of
these groups of tracers for aquifer characterization The
categories are (1) ions and other water soluble com-
pounds, (2) dyes, (3) gases, (4) stable i1sotopes, (5)
radioactive i1sotopes, (6) water temperature, and (7) par-
ticulates (including spores, bactera, and viruses) Dyes
and 1ons are probably the most commonly used tracers
at contaminated sites Dye tracer tests are especially
valuable for characterizing fracture flow and flow in karst
limestone systems, where conventional well tests may
yield misleading results and ground water flow direc-
tions tend to be unpredictable Tritium, released into the
atmosphere during nuclear bomb testing in the 1950s,
serves as a useful tracer to identify ground water that
has been recharged in the last 30 years or so

3.3.4 Other Techniques

Table 3-7 identifies ten miscellaneous techniques for
aquifer characterization Piezometric maps were cov-
ered in detail in the previous chapter Numerous proce-
dures have been developed for hydrologic analysis
based on the water balance or budget for an area A
simple water balance equation is as follows (Dunne and
Leopold, 1978)

AGWS =P -1 -AET-OF -ASM-GWR (3-5)
where
AGWS = change In ground water storage

P = precipitation

| = interception
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Figure 3-12. Declslon tree for selection of aquifer test methods
(ASTM, 1991)

Table 3-8

Pump Test Conditions References

AET = actual evapotranspiration
OF = overland flow
ASM = change in soil moisture
GWR = ground water outflow

Many vanants are possible The usual procedure is to
formulate the equation with the parameter of interest on
the lefi-hand side and the other components that define
the hydrologic system of an area or aquifer of interest
on the nght-hand side Dunne and Leopold (1978) and
Brown et al (1983) are good sources for further infor-
mation on the water balance approach

The most useful application of the water balance ap-
proach in relation to wellhead protection is for estimation
of recharge in the zone of contribution of a well The
Thornthwaite Water Balance method 1s commonly used
for this purpose (Thornthwaiute and Mather, 1955 and
1957) In an unconfined aquifer, changes in soill moisture
profiles In response to changes in the water table pro-
vide an alternative to pumping tests for measurement of
specific yield

The barometric efficiency of confined aquifers, a meas-
ure of the response of a confined aquifer to changes in
atmospheric pressure, 1s being increasingly used to es-
timate aquifer storage properties and transmissivity
(Section 2 1 5 and Table 2-3) Table 3-7 also identifies
some of the more commonly used borehole geophysical
logging methods for measuring aquifer parameters
These methods are used primarly for characterizing
aquifer heterogeneity vertically within a single borehole
and laterally between boreholes Chapter § (Hydro-
geologic Mapping) describes this process further

Index to References on Analytical Solutions for Pumping Test Data

Confined
Non-leaky, fully penetrating wells

Constant Discharge Theis (19935), Cooper and Jacob (1946), Jacob (1950), Variable Discharge

Abu-Zied and Scott (9163), Aron and Scott (1965), Hantush (1964), Lai et al (1973), Moench
{1971), Stallman (1962), Constant Drawdown Hantush (1964), Jacob and Lohman (1952),
Rushton and Rathod (1980), Unclassified Boulton and Streltsova (1977a,b)*, Brutsaert and
Corapcioglu (1976), Moench and Prickett (1972), Papadopulos (1967)

Non-leaky, partially penetrating wells
Leaky, fully penetrating wells

Hantush (1964)

No Storage in Confining Bed Hantush and Jacob (1955), Storage in Confining Bed Hantush

(1960), Multiple Aquifers Hantush (1967), Neuman and Witherspoon (1972), Unclassifled
Corapcioglu (1976), Hantush (1956, 1959, 1964*), Jacob (1946), Lai and Su (1974)

Unconfined
Fully panetrating wells

Constant Discharge Boulton (1954a, 1954b, 1963), Neuman (1972, 1973), Unclassified Boulton

and Streltsova (1978)*, Cooper and Jacob (1946), Jacob (1963), Neuman (1975)*, Prickett (1965)

Partially penetrating wells
Multipla Aquifers

Hantush (1962), Boulton and Streitsova (1976)*, Streltsova (1974*, 1976*)
Aral (1990a, 1990b), Bennet and Patton (1962), Hantush (1967), Javendal and Witherspoon

(1969), Neuman and Witherspoon (1969-confined, 1972-leaky)

Lateral Boundary

Ferris et al (1962), Lohman (1972), Stallman (1963)

* Analytical solutions for anisotropic aquifer conditions See also Table 3-10
Source Categories In first column taken from Driscoll (1986), subcategortes in the second column taken from ASTM (1991) Unclassified

referances are identified In Driscoll (1986), but not ASTM (1991)



Table 3-9 List of Major Ground Water Tracers

INJECTED TRACERS

Natural Tracers Radioactive Activable Iﬁactnve
Stable Isotopes lonized Substances
Deuterium (3H) Tritum Bromine-35 Na* Ci
Oxygen-18 Sodium-24 Indium-39 K* Ci
Carbon-12 Chromium-51 Manganese-25 L Ci
Carbon-13 Cobalt-58 Lanthanum-57 Na* |
Nitrogen-14 Cobali-60 Dysprosium-68 K+ Br
Nitrogen-15 Gold-198
Strontium-88 lodine 131 Dnft Matenial
Sulfur-32 Phosphorus-32
Sulfur-34 Lycopodium spores
Sulfur-36 Bacteria

Viruses
Radioactive Isotopes Fungi

Sawdust
Tntium (H)
Carbon-14 Fluorescent Dyes
Silicon-32
Chlonne-36 Optical bnighteners
Argon-37 Tinopal 5Bm6x(FDA 22)
Argon-39 Direct Yellow 96
Krypton-81 Fluorescein
Krypton-85 Acid Yellow 7
Bromine-32 Rhodamine WT
Radon-222 Eosin (Acid Red 87)

Amidorhodamine 6

(Acid Red 50)
Gases

Physical Characteristics
Fluorocarbons

Water Temperature
Flood pulse

Gases

Helium

Argon

Neon

Krypton

Xenon

Source US EPA (1993)

3.3.5 Measurement of Anisotropy

Measurement of anisotropy requires determination of
the direction of maximum and minimum hydraulic con-
ductivity In a homogenous, horizontally layered aquifer,
the direction of mimmum conductivity 1s usually as-
sumed to be in the vertical direction, and the maximum
in the horizontal direction (Section 2 2 2) Fetter (1981)
suggests collecting undisturbed cores for measurement
of vertical hydraulic conductivity in the laboratory and
using slug tests, which pnmarily measure horizontal
conductivity, in the test hole This procedure also re-

quires nstallation of at least three wells to determine
accurately the onientation of equipotential lines

A number of other methods have been developed for
estimating anisotropy in layered aquifers using pumping
tests Most require a mimnimum of two or three observa-
tion wells, in addition to a pumping well, to measure the
degree of departure from a circular cone of depression
that occurs In an isotropic aquifer In fractured rock
aquifers, anisotropy can occur in three directions with no
principle axis aligned in a vertical or horizontal direction

In this situation, various approaches have been devel-
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oped for measuring anisotropy using packer fésts in
multiple holes The dipole flow test, recently described
by Kabala (1993), 1s a single hole, multi-level packer test
that measures distribution of honzontal and vertical hy-
draulic conductivity and the specific storativity when
applied to different bounded intervals

Table 3-10 provides an index to references where more
detailed information on specific methods for measuring
anisotropy can be obtained Figure 5-3 in Chapter 5
{llustrates pumping test responses that serve as qualita-
tive Indicators of anisotropy

3.4 Laboratory Measurements of Aquifer
Parameters

Laboratory measurements of the properties of aquifer
materials require the collection of undisturbed soil cores
using thin-wall samplers for unconsolidated materials or
rotating core samplers for rock Porosity can be calcu-
lated if the dry bulk density of a known volume of soil or
rock and the average particle density are known (Daniel-
son and Sutherland) Various laboratory methods are
available for measuring saturated hydraulic conductivity
of soil cores Alemi et al (1986), ASTM (1968, 1990),
Cleveland et al (1992), Klute and Dirksen (1986)

A disadvantage of measuning aquifer properties from
core samples is that they sample a very small portion of
the aquifer. Consequently, values for hydraulic conduc-
tivity tend to be low compared to values measured in the
field, which include the effects of secondary porosity and
aquifer heterogeneities (Bradbury and Muldoon, 1990,
Bryant and Bodocsi, 1987) On the other hand, labora-

tory measurement of multiple samples can provide valu-
able information on the vertical and lateral vanability of
aquifer properties This information i1s especially impor-
tant for constructing grids for three-dimensional aquifer
modeling (Chapter 6)
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Table 3-10 Index to References on Characterizing Hydraulic Properties of Anisotropic and Fractured Rock Aquifers

Tople References
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* See also reference for pump test methods In fractured rock, which also characterize anisotropy, when present
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Chapter 4
Simple Methods for Mapping Wellhead Protection Areas

This chapter describes a number of simple rethods for
mapping wellhead protection areas (WHPAs) These
range from the very simple arbitrary fixed radius method
(Section 4 3 1), which requires only a map and a com-
pass for inscribing a circle of the defined rachus around
a well, to analytical methods that can be solved graphi-
cally or with a hand calculator A microcomputer with a
spreadsheet program, although not required, can
greatly facihtate the use of these methods (Section
641)

Most of the methods covered In this chapter represent
adaptations of basic ground water flow equations and
equations developed to analyze data collected from
pumping tests using one or more criteria for WHPAs
(Section 4 1) Section 4 2 brefly examines some basic
ground water flow equations, and the remaining sec-
tions describe fixed-radius and simphfied shape meth-
ods (Section 4 3) and simple analytical methods for
wellhead delineation (Sections 4 4 and 4 5)

41 Cnitena for Delineation of Wellhead
Protection Areas

US EPA (1987) defined five critena that may be used
singly or in combination to define the area around a well
i which contamination could represent a threat to drink-
ing water drawn from the well (1) distance, (2) draw-
down, (3) time of travel, (4) flow boundares, and (5)
assimilative capacity These are described briefly below
Section 4 2 2 examines interactions between areas de-
fined by thresholds established under different critena

4.1.1 Distance

The distance criterion uses a fixed radius or other dr-
mension from a well to delineate a WHPA As discussed
in Section 4 3 1, this criterion usually 1s based on some
kind of analysis involving the application of other critena
to generalized hydrogeologic settings The approach is
simple and very inexpensive |t 1s only sutable as a
preliminary step, because the crnterion considers ground
water flow or contaminant processes only indirectly
Since the zone of contribution (Section 4 1 4) rarely 1s
circular, a fixed radius that provides adequate protection
will almost always include areas for which protective
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actions are not required Distance 1s also the end-
product of the application of other delineation critena

4.1.2 Drawdown

Drawdown occurs when water 1s removed from an aqui-
fer by pumping The water level declines In the vicinity
of the well, creating a gradient that drives water toward
the discharge point The gradient becomes steeper
closer to the well, because the flow 1s converging from
all directions and the area through which the water flows
gets smaller This results in a cone of depression around
the well (Figure 4-1) The cone of depression around a
well tapping an unconfined aquifer 1s relatively small
compared to that around a well in a confined system
The former may be a few tens to a few hundred feet In
diameter, while the latter may extend outward for miles

The zone of influence (ZOl) 1s the distance from the well
where changes in the ground water surface can be
measured or Inferred as a result of pumping (Figure
4-2) In a homogenous, porous aquifer, the ZOl will be
circular In heterogenous porous and fractures aquifers,
the ZOI typically has an elliptical or irregular shape
Ground water velocities increase within the cone of
depression of a well, causing contaminants to flow more
rapidly toward the well The drawdown criterion accu-
rately defines areas requiring protection over the aquifer
downgradient from the well, but generally does not in-
clude the zone of contribution upgradient based on flow
boundaries (Figure 4-2 and Section 4 1 4)

4.1.3 Time of Travel (TOT)

The time of travel criterion requires delineation of 1so-
chrones (contours of equal ttime) on a map that indicate
how long water or a contaminant will take to reach a well
from a point within the zone of contribution (Section
414) The WHPA falls in the portion of the zone of
contribution that 1s downgradient from the selected 1so-
chronia (say 50 years time of travel) This area Is called
the zone of transport (ZOT) When the zone of contribu-
tion to a well 1s large (i1 e , ground water from the farthest
parts may take hundreds or thousands of years to reach
the well), the ZOT will define a smaller area than the
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zone of contribution criterion (Figure 4-2) If the ZOC 1s
small, the two will generally overlap

4.1.4 Flow Boundaries (Zone of Contribution)

The flow boundary criterion uses mapping of ground
water divides and/or other physical and hydrologic fea-
tures that control ground water flow to define the geo-
graphic area containing ground water that flows toward
a pumping well (Figure 4-2) Designating this zone of
contrnibution (ZOC) as the WHPA provides the maximum
amount of protection, although there are special cases
where the drawdown (zone of influence) and time of
travel (zone of transport) criteria will coincide with the
ZOCG (Section 4 2 2)

4.1.5 Assimilative Capacity

The assimilative capacity criterion allows the reduction
of a WHPA f contaminants are immobilized or attenu-
ated while moving through the vadose zone of the aqui-
fer so that concentrations are within acceptable imits by
the time they reach a pumping well This may occur by
processes of dilution, disperston, sorption, chemical pre-
cipitation, and biological degradation (Section 12) A
WHPA defined by this criterion would include the zone
of attenuation (ZOA)

This criterion can be used in several ways Incorporation
of an empinical retardation factor for a specific contami-
nant that represents the combined effects of attenuation
processes n the aquifer into time of travel calculations
would result in a shift of Isochrones closer to the well A
more complex application involves establishing an ac-
ceptable concentration of a contaminant at the well and



using solute transport models to define the distance
required to avoild exceeding the target concentration
(Figure 4-3)

In practice, this 1s an unrealistic approach because of
the difficulty of characterizing aquifer physical and
chemical properties for transport modeling of multiple
contaminants Where only one or two contaminants,
such as nitrate loadings from septic tanks or pesticide
loadings, are of primary concern, this approach may be
very useful

4.2 Overview of Wellhead Protection
Delineation Methods

4.2.1 Classification of Delineation Methods

Because the process of wellhead delineation typically
involves the use of more than one of the critena
discussed in the previous section, methods for wellhead
delineation are not readly classified info distinctive
categones This guide classifies WHPA delinealion
methods Into four major groups of generally increasing
complexity

1 Geometric methods that involve the use of a
pre-determined fixed radius and aquifer geometry

(o)

NOTE

Continuous contamination
H from a point source plume
e

without any special consideration of the flow system,
or the use of simplified shapes that have been
pre-calculated for a range of pumping and aquifer
condittons (Section 4 3)

Simple analytical methods that allow calculation of
distances for wellhead protection using equations
that can be solved using a hand calculator or
microcomputer spreadsheet program  These
methods fall into two major groups, which are often
used In combination time of travel calculations
(Section 4 4) and drawdown calculations (Section
45)

Hydrogeologic mapping, which involves identification
of the zone of coninbution (as defined by flow
boundaries) based on geomorphic, geologic,
hydrologic, and hydrochemical characteristics of an
aquifer This Is often used in combination with simple
analytical methods and is usually required when
using more complex analytical and numerical
computer flow and transport models Chapter 5
covers techniques for hydrogeologic mapping

Computer modeling methods, which involve the use
of more complex analytical or numerical solutions to
ground water flow and contaminant transport

BOUNDARY OF WHPA
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Contaminant Concentration
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Ca>Ci>Ce
Whese
C, = Acceptable concentration at well
Cy = Concentratton of Soucce 1 at well
C3 = Concentration of Soutce 2 at well

Figure 4-3 Conceptual illustration of WHPA delineation based on zone of attenuation (from US EPA, 1987)



processes. These methods can be broadly grouped
into simple and complex models, as discussed In
Chapter 6

This classification scheme 1s generally similar to that
used in US EPA (1987) with the following differences
(1) the arbitrary fixed radius, volumetric flow equation,
and simplified shapes methods are all placed in the
geometric category, (2) calculated fixed radius Is
dropped as a category because the two examples given

fall into separate categories (the volumetric equation i1s
geometric, and the Vermont Department of Water Re-
sources method I1s a simple analytical method using a
drawdown crniterion), (3) the numerical flow/transport
models category includes more complex analytical mod-
els that require computer programs for solution

Table 4-1 summarizes the advantages and disadvan-
tages and identifies the type of threshold criteria used
for the three geometric methods and the three other

Table 4.1 Comparison of Major Methods for Delineating Wellhead Protection Areas
Methods/Criterla Advantages Disadvantages
Geomalric Methods

Arbitrary Fixed Radius
(distance)

Cylinder Method (calculated
fixed radius)

Simplified Vanable Shapes
(TOT, flow boundaries)

Other Methods

Simple Analytical Methods
(TOT, drawdown, flow
boundaries)

Hydrogeologic Mapping
(low boundaries)

Computer Semi-Analytical
and Numerical
Flow/Transport Models
(TOT, drawdown, flow
boundaries)

—Easily implemented
—Inexpensive
—Requires minimal technical expertise

—Easy to use

—Relatively inexpensive

—Requires limited technical expertise
—Based on simple hydrogeologic principles
—Only aquifer parameter required 1s porosity
—Less susceptible to legal challenge

—Easily implemented once shapes of
standardized forms are calculated

—Limited field data required once standardized
forms are developed (pumping rate, aquifer
maternial type and direction of ground water
flow)

—Relatively little technical expertise required
for actual delineation

—Greater accuracy than calculated fixed radius
for only modest added cost

—More accurate than simplified variable
shapes because based on site-specific
parameters

—Technical expertise required, but equations
are generally easily understood by most
hydrogeologists and cwvil engineers

—Vanous equations have been developed,
allowing selection of solution that fits local
conditions

—Allows accurate characterzation of
drawdown in the area closest to a pumping
well

—Cost of developing site-specific data can be
high

—Well suited for unconfined aquifers in
unconsolidated formations and to highly
anisotropic aquifers such as fracture bedrock
and conduit-flow karst

—Necessary to define aquifer boundary
conditions

—Most accurate of all methods and can be
used for most complex hydrogeologic
settings, except where karst conduit flow
dominates

—Allows assessment of natural and
human-related affects on the ground water
system for evaluating management options

—Low hydrogeologic precision

—Large threshold radus required to compensate
for uncertainty will generally result in
overprotection

—Highly vulnerable aquifers may be underprotected

—Highly susceptible to legal challenge

—Tends to overprotect downgradient and
underprotect upgradient because does not
account for ZOC

—Inaccurate in heterogeneous and anisotropic
aquifers

—Not appropriate for sloping potentiometric surface
or unconfined aquifer

—Relatively extensive data on aquifer parameters
required to develop the standardized forms for a
particular area

—Inaccurate in heterogenous and anisotropic
aquifers

—Relatively extensive data on aquifer parameters
required for input to analytical equations

—Most analytical models do not take into account
hydrologic boundaries, aquifer heterogeneities,
and local recharge effects

—Less suitable for deep, confined aquifers

—Requires special expertise In geomorphic and
geologic mapping and judgement in
hydrogeologic interpretations

—Moderate to high manpower and data collection
costs

—High degree of hydrogeologic and modeling
expertise required

—Less suitable than analytical methods for
assessing drawdowns close to pumping wells

—Extensive aquifer-specific data required

—Most expensive methods in terms of manpower
and data collectior/analysts costs
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major types of methods for delineating WHPAs (simple
analytical methods, hydrogeologic mapping, and com-
puter modeling) With the minor differences descnbed
above, this table follows the sequence of methods cov-
eredin US EPA (1987) Other important general refer-
ences on wellhead protection delineation methods
include Everett (1992), Matthess et al (1985), and
Southern Water Authorty (1985) Important references
focusing on special geologic settings for WHPA deline-
ation include Kreitler and Senger (1991) for confined
aquifers and Bradbury et al (1991) for fractured rock
aquifers

Guidance documents for WHPA delineation have been
developed by a number of states Most of these docu-
ments use or elaborate on methods outlinedin U S EPA
(1987) Baize and Giltkerson (1992—South Carolina),
Connecticut Department of Environmental Protection
(1991a, 1991b), Heath (1991—North Carolina, also
used In Piedmont areas of South Carolina and Georgia),
llinois Environmental Protection Agency (1990), Mary-
land Department of the Environmental (1991), Muldoon
and Payton (1993—Wisconsin), New Hampshire De-
partment of Environmental Services (1991), Oregon De-
partment of Environmental Quality (1991), Swanson
(1992—Oregon), Vermont Agency of Environmental
Conservation (1983), and Vermont Agency of Natural
Resources (1990)

In addition, all state submittals to the US Environ-
mental Protection Agency for approval of wellhead pro-
tection programs contain a section describing WHPA
delineation methods to be used in the state Often these
documents contain state-specific criteria for the applica-
tion of geometric methods (see examples in Section
4 3)

4.2.2 Relationship of Protection Arcas
Based on Different Criteria

Table 4-2 provides summary definitions of types of well-
head areas based on four of the five criteria for wellhead
protection (1) zone of infiluence (ZOl), (2) zone of travel
(ZOT), (3) zone of contribution (ZOC), and (4) zone of
attenuation (ZOA) The first cniterion, a fixed distance
threshold, I1s based on a qualitative or semiquantitative
application of orie or more of these criteria Table 4-2
also defines the hydrogeologic or other conditions re-
quired for one zone to be less than, equal to, or greater
than another zone, and provides an indication of how
commonly the relationship occurs 1n general the follow-
ing relationships occur ZOA < ZOI < ZOT < ZOC

43 Wellhead Delineation Using
Geometric Methods

Site-specific use of geometric methods for wellhead
delineation requires no mathematical calculations (aibi-
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Table 4-2 Relationships of WHPAs Based on Zone of
Influence, Time of Travel, Zone of Travel, Zone of
Contribution, and Zone of Attenuation

Terms/
Relationship Description

Zone of
Influence

ZOl = area of drawdown or the cone of depression
around a well created by pumping

Zone of
Travel®

ZOT = area around a well defined by a time of
travel (TOT) 1sochron and aquifer boundaries
ZOTpax = ZOT defined by TOTy, isochron or the
edge of the ZOC, whichever Is closer to the well

Zone of
Contribution

Z0C = portion of an aquifer in which all recharge
and ground water flows toward a pumping well
The boundaries of the ZOC are defined by ground
water divides and other aquifer boundaries

Zone of
Attenuation

ZOA = area around an aquifer capable of reducing
concentrations of a contaminant entering the area

at a specified maximum concentration level to less
than a defined acceptable concentration at the well

When distance to TOT,y, Isochron (1e ZOTqy
boundary edge) lies outside the cone of
depression Most common situation for unconfined
aquifers

Z0l < ZOT

ZOl=ZOT  When distance to TOT;, Isochron = distance to

ZOl boundary edge

ZOl > ZOT  When TOTy, tsochron lies within cone of
depression for a well Uniikely to occur in
unconfined aquifers, may occur in confined

aquifers with very large ZOl

Z0l <« ZOC  When upgradient ground water divide lies outside
cone of depression The case in most

hydrogeologic settings

ZOl=ZOC  Rare May occur with flat water table, with high

recharge from rainfall within ZOl Also possible
when ZO! straddles a ground water divide

ZOl > ZOC
ZOT < ZOC

Cannot occur

When distance to TOT,, 1sochron < distance to
ZOC boundary The most common situation The
difference between the two zone decreases as the
TOT threshold criterion increases

ZO0T =2ZOC When distance to TOTy, 1sochron = distance to

ZOC boundary

By definition, cannot occur However, in this
situation TOT Is less than TOT,,,, indicating that
the well I1s very vulnerable to contamination from
sources within the ZOC

ZOT > ZOC

ZOA < ZOT
ZOA = ZOT

2 Defined by time of travel criterion TOT = time of travel for ground
water or contaminants from a point in an aquifer to a pumping well
TOTmin = the minimum acceptable time of travel for purposes of
wellhead delineation TOT isochron = a hine from which TOT is the
same at all points to a pumping well

When assimilative capacity 1s > 0

When contaminant Is not attenuated by the aquifer

trary fixed radius and simplified variable shapes) or very
simple volumetric calculations based on pumping rate
and aquifer porosity (cylinder method) The arbitrary
fixed radius and simplified variable shape methods,
however, must be based on prior use of more sophisti-
cated analysis of ground water flow in hydrogeologic
settings similar to the site at which the geomeinc



method is being used Figure 4-4 illustrates these three
methods

4.3.1 Arbitrary Fixed Radius

The arbitrary fixed radius method (Figure 4-4a) requires
only (1) a base map, (2) a defined distance criterion
based on a generalized application of time of travel or
drawdown criteria to aquifers with similar characteristics
to the aquifer to be protected, and (3) a compass to draw
a circle with a radius around the well(s) that equals the
distance criterion The method does not explicitly ac-
count for site-specific conditions, except that some as-
sessment of the applicability of the assumptions used in
developing the distance cniterion to the site I1s required
Table 4-1 summarizes advantages and disadvantages
of this method

Figures 4-5 through 4-7 illustrate applications of this
method. Figure 4-5 illustrates two graphs used in Mas-
sachusetts to determine a protective radius based on
pumping rate The Zone 1 protective radius Is subject to
the most stringent protection measures and 1s applied
to all wells (Figure 4-5a) The radius for interim wellhead
protection (Figure 4-5b) 15 used to delineate an outer
protective Zone Il until the result of more accurate
WHPA delineation methods are available Figure 4-6
illustrates a graph for determining the radius of an outer
management zone based on pumping rate for crystalline
rock aquifers in Georgia Figure 4-7 Illustrates a graph
for determining an intial protective radius In stratified
dnft aquifers based on both pumping rate and transmis-
sivity. Table 4-3 illustrates a shghtly different format for
this method The Theis method (Section 4 5 3) was used
to calculate typical 2- and 5-year time of travel distances
at different pumping rates for the five major aquifer types
in Idaho. This table allows identification of an interim
protective radius until more accurate wellhead deline-
ation methods can be used

4.3.2 Cylinder Method (Calculated Fixed
Radius)

The cylinder method uses a volumetric flow equation to
calculate a fixed radius around a well through which
water will flow at a specified travel time (Figure 4-4b)
The radius, in effect, defines a circular time of travel
isochrone around the well, which, extended through the
aquifer, delimits a cylinder with a pore volume equal to
the volume of water pumped during the specified period
The basic equation is:
Qt = nrHr (4-1)

where:

Q = pumping rate of well

t = time of travel threshold

n = aquifer porosity
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H = open nterval or length of well screen
r = radius of cylinder

Solving for the radius, r, yields the equation

r = Sqri(QT/rnH) (4-2)
This equation 1s most appropriate for a highly confined
aquifer with no vertical leakage from the overlying con-
fining bed The Flonda Department of Environmental
Regulation uses the volumetric equation and a 5-year
time of travel criterion to define Zone Il of a WHPA (U S
EPA, 1987)

The volumetric flow equation I1s not appropriate for un-
confined aquifers because the cone of depression cre-
ates an aquifer geometry that i1s not cylindrical and does
not take recharge into account It also requires a negl-
gible regional gradient (<0 0005 or 0 001) Steeper gra-
dients will result in a zone of influence that 1s not circular
(see Figure 4-2) Since all water I1s assumed to come
from the aquifer, the volumetric flow equation results in
overprotection of semiconfined aquifers, because it
does not account for flow inlo the aquifer from vertical
leakage through the confining bed

If the vertical flow of water can be quantified by analyz-

ing pumping test data or using the vanant of Darcy’s Law

covered in Section 4 5 4, leakage can be incorporated

into the volumetric equation as follows
Q=Q, +Q 4-3)

where

Q. = volume of water pumped from the aquifer

Q, = volume of water entering the aquifer through

leakage

Since both of these values depend upon the radius,
which is the unknown, a trial-and-error solution using a
computer spreadsheet 1s probably the easiest way to
determine the radius at which the Q, + Q) equals the
pumping rate

4.3.3 Simplified Variable Shapes

The simplified vanable shapes approach is really based
on a combination of analytical solutions using time of
travel (Section 4 4) and drawdown equations (Section
4 5) Once the shapes are established, however, site-
specific application of the method involves orienting and
drawing the shapes on a base map without any mathe-
matical calculations If aquifer charactenstics (porosity,
hydraulic conductivity) in an area are relatively uniform,
representative or standardized shapes for different lev-
els of pumping are established using drawdown and
time of travel criteria If aquifer characteristics vary in the
area in which the shapes are to be used, then different
combinations of aquifer parameters and pumping rates
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STEP 1| Delineate Standardized Forms for Certamn Aquifer Type

Direction of

Various standardized forms are generated using analytical equations using ssts of
rapresentative hydrogeciogic parameters. Upgradient extant of WHPA Is calculated with
Time of Travel equation, downgradient with uniform tlow equation

STEP 2| Apply Standardized Form to Wellhead in Aquifer Type

Direction of Ground
Water Flow

Standardized form (g then applied to walls with simitar pumping rate
and hydrogeoiogic paramaeters.

©

Figure 4-4 WHPA delineation using geometric rnethods (a) fixed radius (U S EPA, 1991), (b) cylinder method, (c) simplified shapes
(US EPA, 1987)
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Figure 4-6 Radius of outer management zone based on pump-
ing rate for crystalline rock aquifers, Piedmont and
Blue Ridge (Georgia Department of Natural Re-
sources, 1992, based on Heath, 1991)
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Figure 4-7 Initial setback distance for level B mapping of

stratified dnft aquifers based on pumping rate and
transmissivity (Connecticut Department of Environ-
mental Protection, 1991b)

are tested to determine a large set of shapes Hundreds
of calculations may be required to establish "“typical”
shapes for different aquifer characteristics and pumping
rates

This method requires that the necessary preliminary
work to define shapes has been completed Delineation
of a WHPA then only requires (1) enough information
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about a well to determine which shape “fits,” and (2)
knowledge of the general direction of natural ground
water flow to orient the shape if it has any asymmetry
Figure 4-4c illustrates this process Table 4-1 identifies
relative advantages and disadvantages of this method
Figure 4-8 lllustrates shapes used Iin New Jersey for
delineation of interm WHPAs in the three major types of
aquifers found in that state

4.4 WHPA Delineation Using Simple
Analytical Methods: Time of Travel

(ToT)

Dozens of analytical equations have been developed to
solve ground water flow problems The reason for the
large number 1s that different hydrogeologic settings and
well configurations require modifications of basic ground
water flow equations (Darcy’s Law and the equation of
continuity) to account for aquifer boundary conditions
and other conditions, such as partial rather than full
penetration of an aquifer by a well Any ground water
flow equation can be reformulated to solve for distance
at a specified travel time The important thing 1s to
choose an equation with assumptions appropnate for
the well and agquifer iIn question This 1s discussed further
in Section 4 5

Many analyhical equations describing ground water flow
can be solved with a hand calculator or by using a
microcomputer spreadsheet program (Section 64 1)
This section focuses on time of travel equations that
have been reported in the wellhead protection iterature
that do not require special programming ability or off-
the-shelf software packages Section 6 4 2 discusses In
more detall relatively easy-to-use computer software
programs that allow more computationally complex ana-
lytical and semianalytical solutions to ground water flow
problems without the extensive data and specialized
knowledge required for numencal modeling with com-
puters

The equations covered here do not consider hydro-
dynamic dispersion (Section 122) or contaminant
retardation processes (Sections 13 and 415) In
homogeneous aquifers with no secondary porosity, re-
tardation processes for most contaminants tend to be
more significant than dispersion In this situation, time
of travel calculations will generally be overprotective
Where contaminants are not subject to attenuation (for
example, chlondes and nitrates) and where facilitated
transport is occurring (Section 1 2 4), time of travel cal-
culations should provide a reasonably accurate deline-
ation of the area at risk

On the other hand, time of travel calculations for
homogenous aquifers with significant secondary poros-
ity and heterogeneous aquifers . may significantly
underprotect wellhead areas, because hydrodynamic



Table 4-3 Calculated Fixed Radil for Major Aquifers in ldaho (tdaho Wellhead Protection Work Group, 1992)

E. SNAKE RIVER PLAIN BASALTS
PUMP RATE | 50GPM | 100GPM | 500 GPM | 1000 GPM | 2000 GPM | 3000 GPM | 4000 GPM | 5000 GPM | 6000 GPM | 7000 GPM
2YEARTOT 1600° 1600 2000 2300 2100 3100 3500 3300 4200 4600'
5 YEAR TOT 4400° 4400° 4700° 5000' 5600° 6000 6500 6900° 7300 00
COLUMBIA RIVER BASALTS
PUMP RATE | S0GPM | 100 GPM | 500 GPM | 1000 GPM | 2000 GPM | 3000 GPM | 4000 GPM | 5000 GPM | 6000 GPM | 7000 GPM
2YEARTOT 300° 400" 900" 1300 2200° 2900 8100 4500 §300' €000°
S YEAR TOT 400' 600° 1300' 2000° 2600 3700 4600' 5400 6200 7000

UNCONSOLIDATED ALLUVIUM

PUMP RATE | 60GPM | 100 GPM | 500 GPM | 1000 GPM | 2000 GPM | 3000 GPM | 4000 GPM | 5000 GPM | 6000 GPM | 7000 GPM

2YEAR TOT 6500° 6600 7100 7700'
5 YEARTOT 16000 16000 17000 18000°

8600 10000 11000 12000 13000 14000
18000° 20000 21000 22000° 23000’ 24000'

MIXED VOLCANICSISEDIMENTARY ROCKS - PRIMARILY SEDIMENTARY ROCKS

PUMP RATE | 50GPM | 100 GPM | 500 GPM | 1000 GPM | 2000 GPM | 3000 GPM | 4000 GPM | 5000 GPM | 6000 GPM | 7000 GPM

2YEAR TOT 200° 200" 400 €00
§ YEAR TOT 300° 400 700° 1000’

900° 1000' 1300 1600 1600° 2000°
1300° 1700 1900 2200 2500° 2700

MIXED VOLCANICS/ISEDIMENTARY ROCKS - PRIMARILY VOLCANICS AND SEDIMENTARY ROCKS

PUMP RATE | S0GPM | 100 GPM | 500 GPM | 1000 GPM | 2000 GPM | 3000 GPM | 4000 GPM | 5000 GPM | 6000 GPM | 7000 GPM

2 YEARTOT 3200 3300’ 3400 3600 3900° 4200 4500 4800 §000' 6400
BYEAR TOT 8200 8200 8400 8600 9000 9300° 9700 10000’ 10000' 11000
GPM = Galfons per minute TOT = Time of Trave!

dispersion tends to be more significant than retardation
in such aquifers Hydrodynamic dispersion is significant
in these aquifers for several reasons (1) highly perme-
able porous zones and fracture/conduit flow result in
localized velocities that are significantly higher than the
average ground water velocity, (2) retardation proc-
esses are reduced In permeable zones (gravels, sands,
fractures, conduits) because permeable aquifer materi-
als tend to be less geochemically reactive For example,
the cation exchange capacity (CEC) of a sandy perme-
able zone in an aquifer will be significantly lower than
the CEC of less permeable fine-grained sediments It I1s
necessary to choose higher-than-measured hydraulic
conductivity values or use values in the upper range of
similar aquifer materials (Section 3 2 2) when the poten-
tial for hydrodynamic dispersion 1s high

4.4.1 TOT Using Darcy’s Law and Flow Net

The simplest equation for calculating time of travel is the
form of Darcy’s law that describes average linear veloc-

fty:
v=Kin 4-49)

where*
V = average interstitial (linear) velocity
K = honzontal hydraulic conductivity
i = honzontal hydraulic gradient
n = porosity

This equation 1s most easily used when a potentiometric
map of the aquifer i1s available for measuring hydraulic
gradients For preliminary calculations, K and n can be
estimated (Chapter 3) Once average velocity is known,
the time of travel over a given distance can be easily
caiculated

t=dv=dn/Ki (4-5)
where
t = specified time of travel
d = distance

Or the distance to time of travel contours Is calculated
as follows

d=vt=tKrn (4-6)
where
d = the upgradient distance from the well to the TOT
line

v = average linear velocity (Equation 4-4)
t = specified time of travel

Sidebar 4-1 illustrates use of these equations This
equation is most applicable 1o the following situations

¢ To calculate time of travel in a highly confined aquifer
with a nearly flat potentiometric surface (gradient of
<0 0005 to 0 001)

¢ To calculate tme of travel in an unconfined aquifer
with a nearly flat water table and with drawdown that
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Public Well in Coastal Plain Aquifer
High Pumping Capacity
Low Gradient
High Aquifer Effective Porosity
High Aquifer Hydraulic Conductivity
1y Hybrid UFM/CFR Method

5 yr

10 yr

Well in Piedmont Aquifer
Moderate Pumpling Capacity
High Gradient
Moderate Aquifer Effective Porosity
Moderate Aquifer Hydraulic Conductivity
Hybrid UFM/CFR Method

@:) 1ye S yr 10 y¢

<<<<<<<REGIONAL FLOW<<<<<<<

Well in Highlands Aquifer
Low Pumping Capacity
High Gradient
Low Aquifer Effective Porosity
Low Aquifer Hydraulic Conductivity
Hybrid UFM/CFR Method

@I yr 10 yv <<<<<<<REGIONAL FLOW<<<<<<L

Map Scale = 1-24,000

0 2000 4000 8000 8000
- _____
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NJGS

6-1 5-90 Tais plet was mede to cutlc{ on the Penningten USCS Ouadrangie
Thess WHPAs were produced using the Keyhole methed developed by the NJCS
The peremstors are typicel values for each hydrogesiogic setting
The velues vere decrived uslng professlons! fudgemeat

Figure 4-8. Interim wellhead protection areas in New Jersey using simplified variable shapes (New Jersey Department of Environ-
mental Protection and Energy, 1991)
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Sidebar 4-1.
Example Velocity and Time of Travel
Calculations

Interstitial velocity can be estimated by the following
equation

V=Ki/n

where
K = hydraulic conductivity
i = hydraulic gradient
V = average velocity, in ft/d
n = effective porosity

Time of travel can be calculated from the velocity us-
ing the distance between the points for which the gra-
dient is calculated

t = diV/365

where
t = time of travel in years
d = distance in fest

The following example involves a spill of a conserva-
tive substance such as chlonde The liquid waste infil-
trates through the unsaturated zone and quickly
reaches a water table aquifer that consists of sand
and gravel with a hydraulic conductivity of 2,000
gpd/it? and an effective porosity of 020 The water
level in a well at the spill lies at an altitude of 1,525
feet and, at a well a mile directly downgradient, is at
1,515 feet The velocity of the water and the contamy-
nant, and the time it will take for the chioride to con-
taminate the second well, can be determined by the
following equations

v = (2,000 gpd/it?) x (10 #t/5,280 ft)/ 20 =
18 9 gpd/? = 2 5 fi/d*

t=5,2801/25ft/d=2,112 daysor 58 yr

Rearranging the time of travel equation allows calcula-
tion of a fixed radius for a wellhead protection area
based on a time of travel threshold criterion

d = 365tv

In the above example, a threshold of 10 years would
result in an upgradient distance of 9,125 feet

* 1 fi/d = 7 48 gpd/it®

is small compared to the aquifer ar screened interval
(<10 percent)

To calculate time of travel of a contaminant from a
point source to a downgradient point of interest, /fthe
equipotential lines are approximately equally spaced
between the two points (1 e, the aquifer 1Is homoge-
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neous) Somewhat moie complex methods are re-
quired for wells with steep gradienis in the cone of
depression and wells in areas where there is a slop-
ing regional water table (Sections 44 2 and 4 4 3)

Equation 4 in Table 4-4 can be used fo calculate velocity
induced by a pumping well with a circular cone of
depression

4.4.2 Cone of Depression/TOT (Flat Regional
Hydraulic Gradient)

Steep hydraulic gradients may exist in the vicinity of a
pumping well If this is the case, the changes in gradient
over relatively short distances must be considered when
using Equation 4-5 In confined aquifers especially, the
cone of depression may create a surface of continually
steepening gradients for a distance of miles from the
well In this situation, Kreitler and Senger (1991) recom-
mend calculating the time of travel for various incre-
mental distances from the well (e g, 0to 10 ft, 10 to 100
ft, 100 to 1,000 {t, etc ) using the hydraulic gradient for
each increment (values for n and K remain the same for
each calculation) The total time of travel to a given point
1s the sum of the times of travel of each increment
Intermediate times of travel can be estimated graphi-
cally by plotting log of time of travel versus the log of
distance, which should be an approximately linear rela-
tionship Alternatively, the distance between increments
can be adjusted until the sum of the iIncremental TOTs
equals the target TOT

Equation 10 in Table 4-4 (which i1s essentially the same
as Equation 4-5) can be used for these calculations
This method requires reasonably accurate measure-
ment or estmation of the geometry of the cone of
depression

4.4.3 TOT With Sloping Regional
Potentiometric Surface

The cone of depression of a pumping well 1Is asymmetric
when there is a significant slope with drawdown extend-
ing farther upgradient than downgradient Equations 5
and 6 in Table 4-4 can be used to calculaie pumping
induced velocities In this situation Two similar time of
fravel equations are available for this situation Kreitler
and Seng\r (1991) give the following equation, modified
from Bear and Jacob (1965)

= 0/Ki [, — (Q27Kb)In{1 + @rKbrQ)r,d] (4-7)

where

ix = travel time from point x to a pumping well

n = porosity

1y = distance over which ground water travels in Ty,
I 1s posttive (+) If the point 1s upgradient, and
negative (-) I1s downgradient



Table 4-4 Drawdown and Capture-Zone Geometry Equations (from Pekas, 1992)

DRAWDOWN CALCULATIONS - CONFINED AQuIFER (Section 45 3)

{la) Theoretical Drawdown dh, = 192 5 9 W)
N 4P Kb

(1b) - —ScR__
YTIKbt

(2) Pumping Well Drawdown dh. = 238 log 225Kbt

4P Kb

DRAWDOWR CALCULATIONS — UNCONFINED AQUIFER

{3) Approximate Drawdown

r* Sc

ah, = {2b+ [(2 b)° -2(4 1 2 b dh)1')

Huntoon (1980)

Huntoon (1980)

Javandel & Tsang (1986)

GROUND-WATER FLOW VELOCITY CALCULATIONS (Sections 44 1 and 443)

{4) Velocity from Pumping V. = Q
" 2ZPiRbn,
NET VELOCITY
(5) Upgradient from PW v -V + K
" pw n'
(6) Downgradient from PW Ve = vV, - K i
o =
n'
GROUND-WATER DIVIDE CALCULATIONS (Section 45 1)
(7) Distance to Stagnation P = [¢]
2P Kb
(8) Divide at Pumping Well v =
o 2Kba
{8) Bivide at Upgradient Y -
g Kb

GROUND-WATER CAPTURE/TRAVEL TIME CALCULATIONS (Section 442)

(10) Capture/Travel Time

Walton (1962, 1967)

Keely & Tsang (1983)

Keely & Tsang (1983)

Keely & Tsang (1983)

Javandel & Tsang (1986)

Javandel & Tsang (1986)

Javandel & Tsang (1986)

McLane (1990)

WHERE

Q = Discharge or pumping rate {gpm)

P1 = 3 14159

K = Hydraulic Conductivity (ft/day)

b = Saturated Thickness {ft)

t = Duration of pumping (days)

r. = Radius of pumping well (ft)

S. = Storage Coefficient/Specific Yield (ND)
R = Radial distance from pumping well (ft)
n, = Effective porosity (Decimal)

i = Hydraulic gracdient of static aquifer (ft/ft)

¥
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t:z

Drawdown - confined (ft)

Approximate Drawdown - unconfined {¥t)
Pumping induced velocity (ft/day)

Net velocity upgradient of well (ft/day)
Net velocity downgradient of well {ft/day)
Distance downgradient to stagnation point (ft)
GW divide at pumping well (ft)

GW divide upgradient from pumping well (ft)
Pumping induced hydraulic gradient {ft/ft)
Capture/Travel time for pumping well (days)



Q = discharge
K = hydraulic conductivity
b = aquifer thickness

I = hydraulic gradient

In southern England the simplified vanable shapes
method is used (see Section 4 3 3) employing the uni-
form flow equation (Section 4 5 1) and the following time
of travel equation (Southern Water Authority, 1985)

=SV —r) +ZIN{EZ £ Z 1)} (4-8)

where: Z = Q/2rKbi

and other factors not defined above are
v = velocity (see Eq 4-4)

S = specific yield or storativity

Tw = well radius

The plus or minus sign indicates a point upgradient and
downgradient, respectively

Calculation of distance for a specific travel time requires
trial-and-error calculations using different values for dis-
tances until the equation yields the desired travel time
This can easily be done using a spreadsheet on a
micracomputer

The main weaknesses of these equations are (1) they
only provide distance for travel times along a line
through the pumping well that 1s parallel to the regional
hydraulic gradient (1 e, one point upgradient and one
point downgradient), and (2) they do not take into ac-
count recharge from the surface in unconfined aquifers
or vertical leakage into semiconfined aquifers Where
equipotential lines on a potentiometric map are not
straight lines, this would be the shortest flow line up- and
downgradient. To define a wellhead protection area,
these equations must be used in combination with the
uniform flow equation (Section 4 5 1)

Kreitler and Senger (1991) recommend pathline tracing
models such as WHPA and GWPATH (Section 6 4 3) as
the best method for calculating time of travel for confined
aquifers with regionally sloping potentiometric surfaces,
because they are able to actually define TOT contours

4.4.4 Interaquifer Flow and Time of Travel

The presence of a second aquifer separated by confin-
ing strata above or below a pumping well requires con-
sideration of whether to incorporate interaquifer leakage
into calculations for delineating a wellhead protection
area. Most of the simple methods for delineating well-
head protection areas assume that all of the water en-
tering the well comes from the aquifer in which the well
Is completed. If there is significant leakage, this assump-
tion results in a WHPA that i1s larger than required for
any given time of travel threshold
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Any equations that use discharge from a well (Section
4 5) can take into account interaquifer leakage, provided
that the amount of the leakage can also be calculated
A tnial-and-error approach similar to that discussed In
Section 4 4 3 is required to determine the area in which
the volume of water from the aquifer and the volume of
water from leakage equals the volume of water pumped
from a well

Determining flow from one aquifer to another via a con-
fiming unit uses a shghtly modified form of Darcy’s Law

Q = (K,/m)AH (4-9)

where
Q, = quantity of leakage, 1n gpd
K, = vertical hydraulic conductivity of the confining
unit, in gpd/ft?
m = thickness of the confining unit, in ft
A = cross-sectional area, In ft2
H = difference in head between the two wells

Figure 4-9 illustrates two aquifers separated by a layer
of silt The silty confining unit 1s 10 feet thick and has a
hydraulic conductivity of 2 gpd/fit? The difference in
water level between wells tapping the upper and lower
aquifers 1s 15 feet Assuming these hydrogeologic con-
ditions exist in an area of 1 square mile, the daily quan-
tity leaking from the shallower aquifer to the deeper one
within the area 1s

Q, = (2 gpd/it?/10 ft) x (5,280 ft)® x 15 ft = 83,635,200 gpd

O 60 ¢ o

Agufer °, °)." 0% ffs 0 Q0 |2 4o
] °o g o 0'0“ ' o.°9‘ro° A‘-
Confining Bed — — — —¢ = o [ ,
Pr=2gpd/t " 1Ll T g0
5,000 ,% 9 R O °
Aquifar e : ' 0, ‘o o e 9 »

[N

Ares of lagkages = 1 mi?
P = 2gpd/ft?

m =104

Ah = 16t

P‘
a=pA=-L2_asn
Q= 2 x (5280 x 5280) x 15 = 9,635,200 gpd

Figure 4-9 Using Darcy’s Law to calculate the quantity of leak-
age from one aquifer to another



This calculation clearly shows that the quantity of leak-
age, either upward or downward, can be highly signifi-
cant even If the hydraulic conductivity of the confining
unit i1s small

Kreitler and Senger (1991) propose using the time of
travel across a confining layer as one of several criteria
for differentiating semiconfined from highly confined
aquifers Vertical time of travel across a confining layers
IS
t=hmx/K,H (4-10)
where factors not defined above are
t, = vertical time of travel (years) across the
confining layer
n = porosity
X = travel distance across confining strata
(generally equal to the thickness, m)

The required information comes from well log interpie-
tation and pumping tests of the well or well field

Kreitler and Senger (1991) recommend a 40-year time
of travel to differentiate semiconfined (<years) from con-
fined aquifers (>40 years) Rearranging the above equa-
tion allows determination of the vertical permeability
required to separate a semiconfined from a confined
aquifer

K,=nmx/40H 4-11)
Any other TOT threshold can be substituted for 40 in the
equation

4.5 WHPA Delineation Using Simple
Analytical Methods: Drawdown

By definition, wellhead protection areas are delineated
around pumping wells, which will create a cone of de-
pression Gradients within the cone of depression are
steeper than the local or regional hydraulic gradient,
causing ground water to flow more rapidly there Any
analytical method for analyzing the drawdown and flow
of ground water in the vicinity of a pumping well has
potential value for WHPA delineation provided that the
well design and aquifer conditions do not violate the
assumptions and boundary conditions upon which the
equation I1s based Most analytical methods focusing on
ground water flow to pumping wells have been devel-
oped to measure aquifer properties such as hydraulic
conductivity, specific yield, and storativity The same
equations, however, can be rearranged to solve for dis-
tance to a specific drawdown criterion using measured
or estimated values for other aquifer parameters for
WHPA delineation

Analytical solutions to ground water flow problems are
most easily developed for confined aquifers, because
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the surface of the cone of depression does not represent
an actual flow, as in an unconfined aquifer (1 e, radial
flow to the well 1s horizontal throughout the vertical
section of the well, rather than having a vertical compo-
nent when it reaches the cone of depression) Exact
analytical solutions to radial flow to an unconfined aqui-
fer are not possible, so simplifying assumptions that do
not completely reflect unconfined flow conditions are
required (Todd, 1980) The simplifying assumptions gen-
erally do not create problems for estimating discharge
from a well, but become problematic in rying to define
the radius of the cone of depression for purposes of
WHPA delineation

Before selecting an analytical equation to characterize
the zone of nfluence (cone of depression) of an aquifer,
the charactenistics of the aquifer and well must be known
or approximately known in order to select an equation
whose assumptions and boundary conditions are appro-
pnate for the site Checklist 4-1 provides a checklist of
key well and aquifer characteristics that may affect the
appropriateness of a given analytical equation This sec-
tion focuses only on analytical equations for radial flow
to a pumping well Chapter 6 addresses considerations
related to modeling of ground water flow in one, two, and
three dimensions Only the most widely used analyhcal
methods are described here

4.5.1 Uniform Flow Equation (Sloping
Gradient)

The uniform flow equation has been widely used for the
delineation of wellhead protection areas where a sloping
water table results in an asymmetrical cone of depres-
sion (U S EPA, 1987, Kreitler and Senger, 1991, New
Hampshire Depariment of Environmental Services,
1991) The general equation for the boundary of the
region producing inflow to a pumping well, developed by
the German Forchheimer in 1930, is as follows (Todd,
1980)

—-y/x = tan[(2rKbi’/Q)y] 4-12)
where x and y are coordinates and other factors are as
defined earlier The zone of contribution Is defined using
two equations derived from the above equation

x =-Q/2nKbi (4-13)

and

y; =+ Q/2Kbi (4-14)
These define the downgradient flow boundary (null
point) and the maximum width of the upgradient zone of
contribution, respectively (Figure 4-10) Equation 9 in
Table 4-4 can be used to calculate the distance to the
edge of the cone of depression upgradient Upgradient



Checklist 4«1  Aquifer Characteristics for the

Selection of Analytical Solutions to
Ground Water Flow in the Vicinity of
Wells

Aquifer Type

—. Water table/unconfined
—_ Confined, leaky

. Confined, non-leaky

Regional Hydraulic Gradient

— <0 0005 (nearly flat)

. 00005 to 0001 (transitional)
— >0 001 (sloping)

Number of Aquifers
- One
— Two
—. More than two

Well Panetration
__ Fully penetrating well
. Partially penetrating well

Aquifer Properties

. Porous media

— Fracture flow*

. Karst conduit flow

— Isotropic

— Anisotropic

... Homogeneous hydraulic parameters
— Heterogeneous hydraulic parameters*

Flow Character/Dinension

. Steady-state

— Translent

e Radial

X

— XY

s KYZ

* Analytical solutions are not able to handle fracture flow or
heterogeneous aquifer properties In this situation,
maximum measured or estimated aquifer parameters such

as porosity and hydraulic conductvity should be used to
account for reduced time of travel resulting from fracture

from the well one or more zones can be delimited for
wellhead protection

1. Using the upgradient boundary of the cone of
depression

2. Delineating the entire upgradient zone of contribution
using + v, as the width at the upgradient imit of the
cone of depression and using a potentiometric map
to extend the flow lines to a ground water divide or
other aquifer boundary (see Figure 6-5a)

3. Alternatively, using either of the tme of travel
equations discussed In Section 44 to draw an
approximate TOT contour
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The uniform flow equation applies to highly confined
aquifers It does not account for leakage, and so will
define larger WHPAs than are necessary If TOT critena
are used As discussed In Section 44 4, it may be
possible to account for leakage, although in this situ-
ation, the noncircular shape of the cone of depression
would make this more difficuit This equation can also
be used for unconfined aquifers, using the saturated
thickness of the aquifer, provided that drawdown 1s
small (less than 10 percent) in relation to the saturated
thickness

4.5.2 Thiem Equilibrium Equation

The radial distance to zero drawdown for a pumping well
that has reached equilibrium (determined at the point at
which pumping at a constant rate does not resuit in
further declines in water levels in monitoring wells adja-
cent to the pumping well) can be estimated with the
Thiem equation (Thiem, 1906) Kreitler and Senger
(1991) present the equation in this form for calculating
distance to a specified drawdown criterion
s =[Q2nKb]log, re /1 (4-15)
where
s = drawdown from original potentiometric surface
(threshold criterion)
Q = discharge
K = hydraulic conductivity
b = aquifer thickness
r = radial distance at point of drawdown observation
r, = radial distance of zero drawdown of cone of
depression

Assumptions for this equation are fairly restricive (1)
the aquifer 1s homogeneous and 1sotropic,! (2) the aqui-
fer has infinite areal extent (1 e , there are no boundary
conditions that affect flow within the cone of depression),
(3) the well penetrates the entire aquifer, (4) the regional
water table 1s nearly flat

4.5.3 Nonequilibrium Equations

A disadvantage of using the Thiem equation when con-
ducting pumping tests Is that a long period of pumping
may be required to reach equilibrium A number of non-
equilibrium equations have been developed to measure
aquifer parameters based on changes in drawdown n
the pumping and monitoring wells as a function of ime
For example, the Theis nonequilibrium equation (Thets,
1935) has been used by the Vermont Department of

1 Aquifers with secondary porosity, such as imestone and sandstone,
may exhibit homogeneous characteristics if sufficiently large volumes
are constdered Consequently, pumping tests in rock aquifers may
yield good resuits The measured aquifer properties, however, are
only average values and tend to underestimate the potential for
contaminant transport
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Figure 4-10 Flow to a well penetrating a confined aquifer having a sloping potentiometric surface (a) vertical section, (b) plan view

(adapted from Todd, 1980)

Water Resources (1985) to calculate the radius of the ,
primary zone of protection
r = sqri(u4TY/S) (4-16)
where
T = aquifer transmissivity (Kb)

t = time to reach steady state
S = storativity or specific yield of aquifer

and u i1s a dimensionless parameter related to the well
function

W) =4xrTs/Q (4-17)
where

s = drawdown at the maximum radius of influence
Q = pumping rate

To calculate the radius, the well function Is calculated
using Equation 4-17 and v 1s obtained from Table 4-5
Table 4-4 contains some other simple drawdown equa-
tions for a confined aquifer (Equations 1a, 1b and 3) and
an approximate drawdown equation for an unconfined
aquifer (Equation 3)

Any standard hydrogeology text provides examples and
tables for use of nonequilibrium methods The assump-
tons underlying these equations are somewhat more
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restrictive than the Thiem equation (1) the aquifer is
homogeneous and isotropic, (2) the aquifer is of infinite
areal extent, (3) the well penetrates the entire aquifer,
(4) the well diameter 1s infinitesimal, (5) the water re-
moved for storage 1s discharged instantaneously with
decline of head, (6) the regional water table is nearly flat
Nonequilbrium equations were developed for confined
aquifers

4.5.4 Vermont Leakage and Infiltration
Methods for Bedrock Wells Receiving
Recharge From Unconsolidated
Overburden

The Vermont Agency of Environmental Conservation
(1983) has developed several simple equations for cal-
culating the radius of primary concern for wellhead pro-
tection where fractures in bedrock wells receive
recharge from unconsolidated overburden Where the
bedrock well receives recharge from saturated overbur-
den throughout the year, the leakage equation 1s used
r = sqrif(Q/K)rx] (4-18)
where
r = radius In feet
Q = amount pumped In ft¥/day
K = hydraulic conductivity in ft/day



Table 4-5. Values of the Function W{(u) for Various Values of u for Theis Nonequilibrium Equation (adapted by Fetter, 1980, from

Wenzel, 1942)

u W(u) u Wlu) u wW(u) u W(u)
1x10°1% 22457 x107° 1590 {|4 x 107° 955 || 1x10°¢ 404
2 2176 (|8 1576 |5 933 || 2 335
3 21359 1565 || 6 914 || 3 296
4 210611 x1077 1554 || 7 899 || 4 268
5 2084 |2 1485 || 8 886 |l 5 247
6 2066 ||3 1444 |9 874 || 6 230
7 2050 || 4 1415 || 1 x 107 863 || 7 215
8 2037 ||5 1393 {2 794 || 8 203
9 2025 |{6 1375]|3 753 {| 9 192
1x10™? 2015||7 1360 || 4 725 || 1x 107" 1823
2 1945 || 8 1346 || 5 702 || 2 1223
s 1905 |9 1334 ||6 684 || 3 0906
4 1876 |j1x 107 1324 {7 669 || 4 0702
5 1854 || 2 1255 I8 655 || 5 0560
6 18351{|3 1214 || 9 644 1| 6 0454
7 1820 || 4 1185]]1x 1073 633 |7 0374
8 1807 {(5 1163 {2 564 {8 0311
9 1795 {6 1145 (|3 523 || 9 0 260
1x10°% 1784|{7 11294 495 || 1x10° 0219
2 17158 11165 473 || 2 0049
3 36749 1104 )6 454 || 3 0013
4 1646 || 1 x107° 1094 }| 7 439 || 4 0004
5 1623 ]| 2 1024 || 8 426 || 5 0001
6 1605 | 3 984 |l9 414

This equation was dernived by using Darcy’s Law (Equa-
tion 3-2) to solve for area of vertical leakage by assum-
Ing a unit hydraulic gradient (t = 1 0) and solving for the
radius of a circle with that area Suggested K values for
use in Vermontare sand (100 ft/day), till (1 ft/day), basal
tili (0.01 ft/day) and silt and clay (0 001 ft/day)

The infiltration equation is used when the overburden 1s
not saturated throughout the year and assumes that all
infiltrating precipitation is available to the pumping well
r = sqri{(Q/1)/x] (3-19)

where

r = radius in feet

Q = annual pumpage (ft/yr)
| = infiltration (ft/yr)

Suggested infiltration rates till (0 58 fi/yr), more perme-
able tills shallow to bedrock (1 ft/yr), and sand and
gravel (1.8 ftlyr) Pnmary WHPAs are delineated using
the radius, significant fractures traces, structural trends,
and topography. Secondary areas drain directly into
primary areas and are outlined along upslope drainage
divides. Figure 4-11 illustrates WHPA delineations using
the leakage and infiltration methods

4.5.5 Equations for Special Situations

A variety of solutions to the basic nonequilibbrium equa-
tion have been derived for special aquifer and pumping
conditions These special situations include
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* Unconfined aquifers
e Semiconfined (leaky) aquifers
e Parhally penetrating wells

Table 4-6 provides nonequilibrium analytical equations
and associated well function tables for the following
situations

1 Isotropic, nonleaky confined aquifer with fully

penetrating wells and constant-discharge conditions,

Isotropic nonleaky confined aquifer with partally
penetrating wells and constant-discharge conditions,

Isotropic leaky confined aquifer with fully penetrating
wells and constant-discharge conditions without
water released from storage Iin the confining layer,

Isotropic water fable aquifer with fully penetrating
wells and constant-discharge conditions

Table 3-8 identifies additional references that address
various combinations of these special situations Other
complexities are added (1) when a well 1s located near
an aquifer boundary, such as a perennial stream or
water body, or near an impermeable boundary, (2) when
the cone of depression of pumping wells interact, or (3)
where a single well intersects more than one aquifer
Table 3-8 also identifies references that may be useful
for addressing these situations Often computer model-
Ing 1s required, as discussed in Chapter 6
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Figure 4-11 Delineation of wellhead protection areas for bedrock wells receiving recharge from overburden (a) leakage method,
(b) infiltrabion method (Vermont Agency of Environmental Conservation, 1983)
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Table 4-6 Commonly Used Pump Test Analytical Equations (from Walton, 1970)

Isotropic nonleaky artesian aquifer with fully penetrating wells and constant-discharge conditions

114 6Q 1878
- W =
d T e “=TT

Isotropic nonleaky artesian aquifer with partially penetrating wells and constant-discharge conditions

S=n46QWur __18iS
T "m? =T
m — nmg +
L m

Isotropic leaky artestan aquifer with fully penpetrating wells and constant-discharge conditions
without water released from storage 1n aquitard

114 6Q r 187r%S
] T W(u, 3) T Tm
.: £ r 5 = z.ig Ko ,;
B VYT(Fm) T B
Isotropic water-table aquifer with fully penetrating wells and constant-discharge conditions
5o 114 60 v L 187r%S

7 «ys D, U T
a - 1 87r%S, r_ 27r
Y D, VTIDS,
(r/ D u)

D 4t

where s = drawdown, i feet
Q = discharge, 1n gpm
T = cocfficient of transmussibility of aquifer, in gpd/ft
§ = coefficient of storage of aquifer, fraction
r = distance from production well to observation point, m feet
¢ = tume after pumping started, n days
m == saturated thickness of aquifer, in feet
my = distance from top of aquifer to top of screen, in fect
P’ = coefficient of permeability of aquitard, 1n gpd/sq ft
m’ == saturated thickness of aquitard, 1 feet
S, = specific yield of aquifer, n feet
Wi(u)—see Table 4-6 1

w (u, L, Y)—see Table 4-6 2
m

o

K,

)—sec Table 4-63

ol

—
Wi~

—) Table 4-6 4

W(u.,, %‘)-—sec Table 465

Table 4-61. Values of W(u) or W(u,,) (after Wenzel, 1942)

-
V\K" NX10-18 Nx10~1 NX10™33 NxX10™1t NXJ0~11 Nx10~19 NxI0™® Nx10~® NXI0™7 Nx10~8 NxI10™8 NX10~¢ Nx10~3 NX10~% Nx10~t
)
10 39616 316595 293564 270518 247512 224486 201460 178435 155409 132383 109357 86332 63315 40379 18229
1.3 35561 312535 289509 266483 243458 220432 197406 174380 151354 128328 105303 82278 66 36374 14648
10 32634 309658 286632 263607 240581 217555 194529 171503 148477 125451 102426 40 56394 33547 12227
2.5 30453 307427 284401 261375 238349 215323 192298 169272 146246 123220 100194 77172 54167 31365
30 2.8629 305604 282578 259552 236526 213500 190474 167449 144423 121397 98371 75348 52349 29591 09057
1.3 27088 304062 281036 258010 234985 211959 188933 165907 142881 119855 96830 73807 50813 28099 07942
40 2.8753 30 279701 2566 233649 210623 187598 164572 141546 118520 9 549, 24 49482 26813 07024
4.3 24575 30 1549 8523 255497 232471 186420 163394 140368 117342 94317 71295 48310 25684 06253
50 23521 3004 217 7470 231418 208392 185366 162340 139314 116280 9 326! 24 47261 24679 05598
53 68 299542 276516 2513491 20 7439 13 161387 138361 115330 92310 69289 46313 23775 50.
6.0 2.1698 298672 22 9595 69 183543 160517 137491 1 1 84 44 22953
6.3 2,089 29 787 274846 251820 228794 2035768 182742 159717 1366 11 3665 67620 44652 22201 04115
1.0 20156 297131 274105 251079 228053 205027 1 158976 135950 112924 89899 66879 43916 2,1508 03738
13 19467 2964 273415 250389 227363 204337 181311 158280 135260 112234 89209 661950 43231 0 3403
80 18821 295795 27 9744 226718 203692 180666 157640 134614 111580 88563 65545 42591 20269 03106
33 13215 295189 272163 249137 226112 203086 180060 157034 1 110982 87957 64939 19711 02840
20 17643 204618 271592 248566 225540 202514 179488 156462 133437 110411 87386 64368 41423 19187 02602
93 17103 294077 271051 248025 224999 2071973 178948 155922 13-2896 109870 86845 63828 40887 138695 02387




Table 4-6 2 Values of W{(u, /m, y)

y=075
u rim=201 001 0001
10-* 13 8767 15 2580 16 7637
10-8 11 5741 12 9554 14 2530
10— 92716 10 6478 11 3995
10-* 6 9699 81392 8 3991
10~2 46712 52967 53635
10— 22597 24103 24193
1 02823 02898 02898
2 00634 00643 00645
3 00167 00169 00169
u rim=035 02 01 003 00! 0001
10-* 13 5665 14 4639 15 4989 17 6358 19 7506 24.2954
10— 112639 12 1663 13 1963 153332 17 4498 21 1506
10+ 89614 98638 10 8938 13 0307 151224 17 0340
10~ 6 6597 75621 8 5921 10 6994 119812 12 5845
10-2 4 3661 52685 6 2757 7 4555 7 8851 8 0462
10 21511 2882 3.2620 3 5305 3 6050 3.6304
1 03384 03936 04185 0.4319 0.4349 04353
2 00808 00910 00942 00964 0 0966 00968
3 00223 00247 00252 00254 00254 00255
y =025
u rim = 100 075 020 0 1o 003 ool 0.001
10~ 13 3385 13 9367 16 2123 18 9845 251707 314176 449718
10-® 110359 11 6341 13 9097 16 6837 22 8681 29.1150 40 7960
10— 86334 93316 11 6072 143794 30 5656 26 7666 33 5338
10-3 64317 70299 0 3055 12.0777 18 2045 22 6026 249428
10~ 41381 47303 70119 97382 13 8971 15 3684 15,9702
10 19231 25213 44451 57545 6 8298 7.1101 7 1913
1 02981 04949 07160 0 7856 0 8493 0 8549 0 8531
2 00806 01211 01675 017%4 01900 0.1875 01893
3 0 0245 00366 00454 00472 00501 00481 0 0481

Table 4-6 3 Values of W(u, 1/B) or W(u", 1/B) (after Hantush, 1956)

8 |-
001 0015 003 0.05 0.075 010 ors 0.2 03 o4 0.5 06 07 0.8 09 1.0 1.5 20
uoru
0 000001
0 000008 94413
000001 94176 86313
0 00005 88827 84533 72450
00001 83983 81414 72122 62282 54228
00005 69750 69152 66219 60821 54062 48530
0001 63069 62765 61202 57965 53078 48292 40595 35054
000s 47212 47152 46829 46084 44713 42960 38821 34567 27428 22290
001 40356 40326 40167 39795 39051 38150 35725 32875 27104 22253 18486 15550 13210 11307
005 24675 24670 24642 24576 24448 24271 13776 23110 19283 17075 14927 12955 12958 11210 09700 O 8409
01 18227 18225 18213 18184 18128 18050 17829 173527 16704 15644 14422 13115 11791 505 09297 08190 04271 02278
oS 05598 03597 05596 05594 O0SS88 05581 0S5S561 05532 05453 05344 05206 05044 04860 04658 04440 04210 03007 01944
10 02194 02194 02193 02193 02191 02190 02186 02179 02161 02135 02103 02065 02020 01970 01914 01855 01509 0©1139
50 00011 00011 0001t 000l 00011 00011 0001t 000It 00011 00011 00011 00011 00011 001t 0001t 00011 00010 00010
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Table 4-6 4 Values of Ky(r/B) (after Hantush, 1956)

N r/B=Nx10 Nx1I0* N x 107 N

10 70237 47212 24271 04210
15 66182 43159 20300 02138
20 63305 40285 17527 01139
25 6 1074 3 8056 15415 00623
30 59251 36235 13725 00347
35 57700 3 4697 12327 00196
40 56374 33365 11145 oo112
45 55196 32192 10129 00064
50 54143 3142 09244 00037
55 53190 30195 0 8466
60 52320 29329 07775 00012
65 51520 28534 07159
70 50779 27798 06605 00004
75 50089 27114 06106
80 49443 2 6475 0 5653
85 48837 2 5875 05242
90 4 8266 25310 04867
95 47725 24776 04524

Table 4-6.5 Values of W(u,,, /Dy (from Boulton, 1963)

ug = Ny % 10"

r{Dyw= 0 01 riDg=01 riD;=02 r/Dy= 0 316 riDy =04 riD, =06
N n WerlD) | N 8 WarID) | N n WuerlD) | N n Wu.rD) | N n_ W r/D) | N " W, r/Dy)
1 1 182 1 1 180 5 0 119 1 0 0216 1 0 0213 1 0 0206
1 2 404 5 1 324 1 1 175 2 0 0 544 2 0 0534 2 0 0 504
1 3 6 31 1 2 381 ] 1 295 5 0 1153 5 0 1114 5 0 0996
5 3 182 2 2 430 1 2 329 1 1 1655 1 1 1564 1 1 1311
1 4 §40 s 2 471 5 2 350 $ 1 2504 5 1 2181 2 1 1493
1 S 942 1 1 483 1 3 3 51 1 2 2623 1 2 2225 5 1 1553
1 6 944 1 4 485 1 3 2 648 1 3 2229 1 2 1555

r/Dyw= 08 rDy=10 r|Dy=15 r|Dy==20 r[Dy=235 r/Dy=30
N a Ww,r/D)WN n  W(u,r[D)| N n  W(u,rlD)| N n W,riD)| N n Wi, rlD)| N n W, r/Dy)
3 -1 0045 s -1 00444 5 -1 0 0394 333 —1 00100 5 -1 0 0271 S —1 00210
1 0 0197 1 0 Q 1855 1 0 0 1509 5 —1 00335 1 0 0 0803 1 0 0 0534
2 0 0 466 2 0 0421 125 ¢ 0199 1 0 0114 125 0 0 0961 125 0 0 0607
5 0 0857 5 0 0715 2 0 0301 125 0 0144 2 0 01174 2 0 0 0681
1 1 1050 1 1 03819 5 0 0413 2 0 0194 5 0 01247 5 0 0 0695
2 1 1121 2 1 0 841 1 1 0427 5 0 0227 1 1 01247 1 1 00695
5 1 1131 5 1 0 842 2 1 0 428 1 1 0 228

Iy = Ny X 10"

r]D, == 001 r/D¢=01 r|Dy=02 r{D,= 0316 riDt=204 riDi=06
N n Wu,rlD) |N a Wu,rlD) |N n W, r/D)| N n  Wu,riD){ N n W, r/D)| N n W(uy,rIDy)
4 2 945 4 0 486 4 -1 351 4 —1 266 1 -1 223 444 —1 1 586
4 3 954 4 1 495 4 0 354 4 0 274 1 0 226 222 0 1707
4 4 1023 4 2 564 2 1 369 4 1 338 5 0 240 444 O 1844
4 5 12,31 4 3 772 4 1 385 4 2 542 1 1 255 167 1 2448
4 6 14 61 4 4 100t 1s 2 455 4 3 772 378 1 320 444 1 3255

4 2 542 1 2 405
r/Dy= 08 rDy=10 HD=15 /Dy =20 rD=25 riD; =30
n Bu,riD) |N n W(u,rlD) |N n W, r|D) | N n  Wuy,,r/D)|N n W, r/D)|N n Wy, r/D)

2.5 -2 1133 4 =2 0844 711 =2 0444 4 -2 0239 256 —2 01321 178 —2 00743
25 -1 1158 4 -1 0901 355 —1 0 509 2 -1 0283 128 —I1 01617 889 —2 00939
125 0 1264 4 0 1356 711 —1 0 587 4 —1 0337 256 —1 01988 178 —1 01189
25 0 1387 4 1 3140 267 O 0963 15 0 0614 96 —1 03990 667 —1 02618
937 0 1938 711 0O 1 569 4 (1] 1111 256 O 07977 178 0 05771
2.5 1 2,704
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Chapter 5
Hydrogeologic Mapping for Wellhead Protection

Hydrogeologic mapping provides a valuable comple-
ment to the simpler methods for wellhead protection
area (WHPA) delineation covered In the previous chap-
ter and 1S a necessary precursor to more complex
numerical modeling of ground water flow using comput-
ers (Chapter 6) Figure 5-1 illustrates WHPA delineation
using geologic contacts and ground water divides as
the key elements of hydrogeologic mapping Poten-
tiometric maps (Chapter 2) and methods for measuring
aquifer parameters (Chapter 3) are essential paris of
hydrogeologic mapping This chapter focuses on gen-
eral approaches to hydrogeologic mapping (basic ele-
ments—Section 51, existng data collechon and
interpretation—Section 5 2, and field data collection—
Section 5 3)

ground water
divide

geologic
contact

Section 5 4 covers four aspects of hydrogeologic map-
ping that require special consideration in relation to
WHPA delineation (1) adjustments of WHPAs to ac-
count to aquifer boundaries (Section 5 4 1), (2) adjust-
ments of WHPAs based on aquifer heterogeneity and/or
anisotropy (Section 5 4 2), (3) assessing the presence
and degree of confinement in aquifers (Section 5 4 3),
and (4) mapping of fractured rock and karst aquifers
(Section 54 4) Section 5 5 describes the approach of
ground water vulnerability mapping based on hydro-
geologic factors that affect the movement of contami-
nants in the subsurface Finally, Section 5 6 discusses
use of geographic information systems (GIS) for WHPA
delineation

ground water
divide

contact

ZONE 1 - Radius around public supply well

ZONE Ii - Land surface overlaying the part of the aquifer that contributes water to the well
1 ZONE il - Land surface through and over which water drains into Zone If

Figure 5-1

Welthead protection delineation using hydrogeologic boundaries (U S EPA, 1993a)



5.1 Elements of Hydrogeologic Mapping

Hydrogeologic mapping requires the systematic and in-
tegrated appraisal of solls, geomorphology, geology, hy-
drology (including meteorologic aspects), geochemistry,
and water chemistry as they affect the occurrence, flow,
and quality of ground water A brief discussion of the
significance of these elements follows Any standard
hydrogeology textbook contains one or more chapters
devoted to methods for hydrogeologic mapping (see
Table 5-8). Section 5 3 identifies major references with
a focus on field aspects of hydrogeologic mapping

5.1.1 Soils and Geomorphology

The character and distribution of soils and landforms are
major considerations in hydrogeologic mapping in hu-
mid areas where unconfined aquifers develop in uncon-
solidated matenals and lie relatively near the land
surface In this setting, the water table generally follows
the land surface, although with more subdued relief
(Section 2 1 2), Recharge areas are generally located in
upland areas, and ground water divides tend to coincide
with surface watershed boundanes Valley bottoms and
floodplains with perenmial streams represent discharge
areas

For all areas, solls and topography are the primary
features that determine how much precipitation nfil-
trates into the ground to recharge ground water, and
how much runs off to surface streams Highly permeable
soils and flat topography favor infiltratton, less perme-
able soils and steep slopes promote surface runoff

5.1.2 Geology

Geology forms the physical framework for the flow of
ground water Porosity (pnmary and secondary—Sec-
tion 2.1 4), storage properties (Section 3 1 1), and trans-
miting properties (hydraulic conductivity—Section
3.1.2) are largely a function of the geologic materals
present. Stratigraphy (relationships of layered geologic
materials) affects local and regional ground water flow
by the distribution of strata of relatively higher and lower
permeability Structural features (the folding and fractur-
ing of rock by tectonic processes) may alter directions
of ground water flow compared to horizontal sediments
by changing the inclination of permeable sediments and
confining units Displacement of sediments by faulting
may either provide zones of increased permeability
through fracturing or create aquifer boundaries when
impermeable strata block the flow of water through per-
meable strata (see Figure 2-17) Secondary fracture
porosity results primanly from tectonic stresses

5.1.3 Hydrology

Although the focus of hydrogeologic mapping Is ground
water, the occurrence and flow of ground water must be
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understood In the context of the larger hydrologic cycle,
which includes atmospheric water, water in the vadose
(unsaturated) zone, and surface water This is especially
true of unconfined aquifers, which are intimately con-
nected to the hydrologic cycle Complete charac-
terization of unconfined aquifers requires consideration
of infiltration of precipitation, the effects of evapotrans-
piration, and the relationship between the ground water
and surface water systems Potentiometric surface
mapping (Chapter 2) I1s one of the most important as-
pects of hydrogeologic charactenzation Confined aqui-
fers that are distant from areas of surface recharge can
be considered effectively 1solated from the hydrologic
cycle, provided that they are highly confined (Section
5 4 3), which greatly simplifies analysis of the ground
water flow system (Section 4 5)

5.1.4 Hydrochemistry

Data on water quality can provide valuable insights into
the hydrogeologic system As discussed in Section
54 3, a number of hydrochemical indicators are useful
for assessing the presence and degree of confinement
of an aquifer The geochemical charactenistics of the
aquifer matrix and factors such as pH and redox poten-
tial (Eh) and aquifer microbiology (Section 1 4) are es-
pecially important if the potential for attenuation of
contaminants 1s being considered in the WHPA deline-
ation process (Section 4 1 5)

5.2 Existing Data Collection and
Interpretation

The first step in hydrogeologic mapping is to find out
what information 1s already availlable for the area of
interest This includes first reviewing published maps
and reports about soils, geology, and hydrology of the
area The next step 1s finding and analyzing any unpub-
lished data, such as well drll logs, and hydrologic and
water quality data on file at local, state, or federal gov-
ernment offices EPA's STORET database may have
ground water quality data from the area (US EPA,
1986¢) Finally, examination of aenal photographs pro-
vides an opportunity to relate knowledge gained in re-
viewing published and unpublished information to the
specific wellhead area, and helps focus field efforts to
collect additional required information

i

The above steps do not have to be followed In strict
sequential order, but an intensive initial effort to identify
and review published and other existing information will
generally pay off by (1) avoiding field effort spent in
collecting data that 1s already available, and (2) targeting
the location and type of field data collection to yield the
greatest benefits Dury (1957) provides comprehensive
coverage of general aspects of map interpretation, and
Warman and Wiesnet (1966) discuss the design and
use of hydrogeologic maps Pettyjohn and Randich
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(1966) provide an example of hydrogeologic interpreta-
tions using lithofacies maps n glaciated areas Mey-
boom (1961) reviews terminology used in ground water
maps

Getting to know one or more individuals in the various
state and federal agencies that publish and maintain
files of information on soils, geology, and water re-
sources can facilitate the process of determining what
is available for the area of interest The planning and
utility departments of local government are also sources
of potentially valuable information that may not be avail-
able from other sources Worksheet 5-1 provides a form
for listing personal contacts and identifying available
maps that can provide a starting point for compiling a
hydrogeologic map of an area

5.2.1 Soil and Geomorphic Data

Section 3 2 1 discusses the use of soil survey data in
the estimation of aquifer parameters Soil surveys pub-
ished by the Soil Conservation Service (SCS) of the
U S Department of Agriculture are typically at a scale
of 1 15,840 or 1 20,000 and mapped on a airphoto base
Simplified geomorphic maps can be readily developed
from a soll map by grouping soil map units into larger
geomorphic units (floodplains, terraces, uplands, etc)
Nonfloodplain soils are differentiated on the basis of
slope with letter designations in the map symbol This
allows development of geomorphic units based on slope
range Slope range, combined with the infiltration char-
actenstics of the soll, allow interpretations of infiltration-
runoff characteristics of an area Table 5-1 summarizes
criteria for SCS runoff classes, and Table 5-2 includes
cniteria for SC8 hydraulic conductivity and permeability
classes This information can be used to develop a
qualitative assessment of the ground water recharge
potential In an area

5.2.2 Geologic and Hydrologic Daia

The Hydrologic Atlas (HA) and Water Resource Investi-
gation (WRI) series of the U S Geological Survey are
some of the best sources of hydrogeologic information
In fact, a hydrologic atlas of aquifer areas and charac-
tenstics may provide much of the information required
for WHPA delineation These maps are based on the
interpretation of all available geologic information from
soil profiles, test wells, rock outcrops, observation wells,
seismic surveys, and other means of subsurface obser-
vation The location of agquifers on these maps 1s est-
mated by examining surficial geology, depth to bedrock,
and depth to the water table A hydrologic atlas coniains
information about ground water availability, well loca-
tions, ground water quality, surficial deposits influencing
transmissivity, basin boundares, flow characteristics of
surface water, and other hydrologic factots

21

Table 5-1 SCS Index Surface Runoff Classes

Runoff Classes*

Slope Ksat Class**

Gradient (%) VH H MH ML L VL
Concave*** N N N N N N
<1 N N N L M H
1-5 N VL L M H VH
5-10 VL L M H VH VH
10-20 VL L M H VH VH
>20 L M H VH VH VH

* Abbreviations Neglgible-N, very low-VL, low-L, medium-M, high-H,
and very high-VH These classes are relative and not quantitative

** See Table 5-2 for definitions Assumes that the lowest value for
the soll occurs at <0 5 m If the lowest value occurs at 05to 1 m,
reduce runoff by one class If it occurs at >1 m, then use the lowest
saturated hydraulic conductivity < 1 m VL Ksat is assumed for soils
with seasonal shallow or very shallow free water

*** Areas from which little or no water escapes by flow over the ground
surface

Source U S EPA (1991b)

Table 5-2 SCS Crnitenia for Hydraulic Conductivity and
Permeability Classes

Class Units

Saturated Hydraulic w/sec in /hr
Conductivity

Very Low (VL) <001 <0 001
Low (L) 001-01 0 001-0 01
Moderately Low (ML) 01-1 001-0 14
Moderately High (MH) 1-10 014-14
High (H) 10-100 14-142
Very High (VH) >100 >142
Permeability cm/hr an/ hr
Very Slow <015 <0 06
Slow 01505 006-02
Moderately Slow 0515 02-06
Moderate 1550 0620
Moderately Rapid 50-152 2060
Rapd 152-508 6 0-20
Very Rapid >50 8 >20

Source US EPA (1991b)

Awater table or potentiometric surface map, if available,
1s the next most valuable source of hydrogeologic infor-
mation (Chapter 2) Such maps may be available from
the state water resource agency or geological survey
SCS-published soil surveys usually give summary data
on monthly distribution, averages, and ranges of tem-
perature and precipitation The National Weather Serv-
ice (1988) 1s the primary source for other cimatological



Worksheet 5-1
Collection of Existing Data for Wellhead Protection

Contacts and Phone Numbers

EPA Regional Ground-Water Representative
USGS Water Resources Division State Office
SCS District/State Office

Federal Management Agency Local Office*

State Wellhead Protection Program

State Water Resource Agency™*

State Environmental Protection Agency**

State Geological Survey

Local College/University Geology Department

Local College/University Library

Topographic Maps Soils/Vegetation Maps
— .7 1/2' Topographic ___ Sol Map
- 15' Topographic —__Vegetation
—_Regional

— . Other

Geologic Maps Aenal Photography
— .. State ____large scale
— Regional - High altitude
- Local ____ Sateliite
Hydrologic Maps

—_USGS Hydrologic Atlas

—. State-Published Hydrologic Maps
— Water Table/Potentiometric Surface
Watershed

Wetlands

Flocd Plain Maps (FEMA, FIRM)
Other

Land Use Maps

. Ownership/Tax Assessment

— . Subsurface Ownership (if different from surface ownership) -
— . Zoning/Planning

— Utilities

Other

* Required only if wellhead protection area includes federal lands (most likely in western U S ) Possible agencies include the Bursau
of Land Management, US Forest Service, US Fish and Wildiife Service, and U S Department of Defense
** [f different from agency responsible for wellhead protection
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data, which may be required to evaluate recharge of
unconfined aquifers Detailed precipitation data may be
useful if available well-level measurements for develop-
Ing a potentiometric surface map were taken at different
times (Section 2 3)

Geologic information 1s available from many sources
The US Geological Survey and state geological sur-
veys are the pnimary source for surficial and bedrock
geologic maps Important surface hydrologic features
include drainage basins (watersheds), surface water
bodies, wetlands, and flood zones Wetlands can be
identified on topographic maps, however, more detailled
wetland maps may be available from the state wetlands
regulatory agency or regional office of the US Army
Corps of Engineers Flood mapping for every state has
been prepared by the Federal Emergency Management
Agency (FEMA) Two types of flood mapping are avail-
able Flood Insurance Rate Maps (FIRM) and Flood
Boundary and Floodway Maps These maps delineate
the areas adjacent to surface waters that would be
under water in 100-year and 500-year floods Historic
flood data may also be available from community and
state libranes

If published information sources are lacking or scarce,
a review of well logs, both public and private, and test
boring logs becomes the primary method for developing
preliminary hydrogeologic interpretations for an area
Well records provide geological data (although the qual-
ity of descriptions prepared by water well dilllers may be
problematic) Records of well discharge and water level
fluctuations may provide a basis for evaluating an
aquifer’s hydraulic conductivity, transmissivity, and
storativity

5.2.3 Airphoto Interpretation

Aerial photographs provide an mexpensive way to di-
rectly observe natural and artificial features on the land
surface Aenal photographs are basic to any geologic or
hydrogeologic investigation Much information can be
obtained from stereopairs of black-and-white air photos,
which provide a three-dimensional image of the surface
when viewed with a stereoscope Patterns of vegetation,
vanations in grey tones n soil and rock, drainage pat-
terns, and linear features allow preliminary interpreta-
tions of geology, soils, and hydrogeology Table 5-3
describes the types of observations and the inferences
about geologic and ground water conditions that can be
made from aenal photographs Various standard texts
are available for gudance in air photo interpretation
methods (Avery, 1968, Lueder, 1959, Miller and Miller,
1961, Strandberg, 1967, Lillesand and Kiefer, 1979,
Verstappen, 1977) All arr photo interpretations should
be field checked and revised where “ground truthing”
indicates features that were missed or incorrectly deline-
ated
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Black-and-white air photos are avatlable from various
federal agencies for almost any location in the United
States These are the cheapest type of air photo to
obtain The nearest county office of the Soil Conserva-
tion Service or Agricultural Stabilization and Conserva-
tion Service (they will often be In the same building) is
the best starting place to determine what 1s available
Many of these offices have air photo coverage that
extends back to the 1930s When photographs for mul-
tiple years are available, all should be examined, be-
cause significant features that are obscured in one set
may be evident in another Also, sequential examination
of air photos taken at different times provides valuable
information on changes in land use

Air photos often reveal linear features, called fracture
traces, that indicate zones of relatively higher perme-
ability in the subsurface Fracture-trace analysis using
air photos can provide preliminary information on possi-
ble preferential movement of contaminants Fetter
(1980, pp 406-411) provides a good introduction to
fracture-trace analysis Parnizek (1976) provides a good
review of the North American literature on fracture trace
and lineament analysis

5.3 Field Data Collection

More often than not, existing information sources will not
provide all the information required to delineate a
WHPA Where financial resources are very limited, field
data collection may be restricted to activities such as
measurement of water levels in existing wells to develop
a potentiometric map and very simple well tests (Section
323) Where a large population 1s served by a few
wells, and options for alternative water supplies are
limited if they should become contaminated, extensive
hydrogeologic field investigations for computer model-
ing, costing tens of thousands of dollars or more, may
be justified

A detailed discussion of field methods 1s beyond the
scope of this manual Some standard texts on geologic
mapping methods include Bishop (1960), Compton
(1962), Lahee (1961), and Low (1952) Thomas (1978)
reviews principles for field hydrogeological investiga-
tions, and Scheidegger (1973) reviews geomorphic as-
pects of hydrology Warman and Wiesnet (1966) provide
gurdance on the design of hydrogeologic maps
LaMoreaux (1966) and UNESCO (1970) describe sym-
bols and conventions for the preparation of hydro-
geologic maps UNESCO (1975) provides the same for
geohydrochemical maps Figure 5-2 provides an over-
view of symbols recommended for hydrogeologic map-
ping Moore (1991) provides guidance on planning and
report preparation

As noted at the beginning of this chapter, any text on
hydrogeology provides some coverage on field invest-



Table 5-3 Representative Types of Observations and Inferences of Geologic and Ground-Water Conditions from the Study of
Aerial Photographs (Heath and Trainer, 1981)

Type of Observation

Purpose of Observation

A. Water, or water features, at the land surface

1. Dralnage density, subdivision of area on
basis of drainage density

2 Localized gain or loss of stream-flow
(e g, springs and seeps along streams,
sites or reaches of loss of water from
channel)

3 Seepage at land surface (commonly

Inference of ground-water conditions from surface-water conditions

Classification of terrain on basis of relative permeability, differenttation of tracts of
rather different permeability

Classification of streams as gaining or losing, and location of gaining and losing
reaches, from this, inference of general nature of ground-water discharge,
recharge, and circulation in near-surface rocks, together with geologic data, may
permit inference of confined or unconfined aquifers, and of geologic controls on
ground water

Location of sites of ground-water discharge, areal form and areal and topographic

shown by character and distribution of
vegetation)

4 Presence and distnbution of man-made
water features (wells, improved springs,
reservoirs, canals)

distribution of these sites, together with geologic data, may permit inference of
type of aquifer and of geologic controls on ground water

Show presence of water, with supplementary data, particulatly relating to
vegetation and land-surface drainage, may permit inference of effect of these
water features on ground water in the area (Photographs made before and after

construction of features are particularly valuable)

B Character and areal distribution of rocks

1. Specilfic type(s) of rock(s) as inferred from
such evidence as landforms, texture,
color, or tone of land surface, vegetation

Inference of broad geologic controls on the occurrence of ground water

Broad classification of types of water-bearing material near the land surface, and
hence inference of probable porosity and relative permeability of near-surface
material, with data on climate, vegetation, and drainage, inference of chemical

qualty of ground water

2. Spatial form and Iinterrelations of rock
units (stratigraphy and structure)

ground water

3 Spatial relation of rock units to
surface-water bodies

Inference of size, shape, and boundanes (lithologic and hydrologic) of probable
aquifers and aquicludes, inference of conditions of recharge and discharge of

Inference of hydrologic boundaries and recharge conditions

gation methods Ground water texts that give spectal
emphasis to hydrogeologic mapping include Brass-
Ington (1988), Brown et al (1983), Erdélyr and Galfi
(1988), Mandel and Shifton (1981), UNESCO (1977),
U S. Geological Survey (1980), and Walton (1970) U S
EPA (1991a) provides an overview of ground water In-
vestigation methods The reports of EPA-sponsored
workshops on minimum data requirements for ground
water (US EPA 1988a) and hydrogeologic mapping
needs for ground water protection and management
(U.S EPA 1990) may also serve as useful resources
U.S. EPA (1993c) provides a comprehensive compila-
tion of more than 250 methods for subsurface field
characterization and monitoring techniques The rest of
this section provides a bnef overview of major field
methods and their applicability to WHPA investigations

5.3.1 Soil Survey

If an SCS soil survey is not available for the county in
which a WHPA is being investigated, SCS may be able
to provide technical assistance by mapping the area of
interest The nearest District SCS office should be con-
tacted to find out about the possibility of, and procedures
for, obtaining technical assistance If governmental as-
sistance is not available, hinng a consuiting soil scientist
might be an option The cost of this optton might be
justified for a highly vulnerable unconfined aquifer serv-
ing a large population. Consulting soil scientists can be
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identified by contacting the National Society of Consult-
ing Soil Scientists (325 Pennsylvania Ave, SE, Suite
700, Washington, DC, 20003), the Office of the Ameri-
can Registry of Certified Professionals in Agronomy,
Crops, and Soils (ARCPACS, 677 S Segoe Rd , Madi-
son, WI 53711-1086), or the state association of profes-
stonal soll scientists, iIf one exists State associations
may have their own certification programs, and are prob-
ably the best starting point to find a soll scientist famihiar
with soils in the area of interest Any contract signed with
a consulting soll scientist should specify that the map
conform to standards of the SCS National Cooperative
Sotl Survey program

5.3.2 Surface Geophysical Measurements

Surface geophysical methods, such as DC resistivity,
electromagnetic induction, ground-penetrating radar,
seismic refraction and reflection, and microgravity sur-
veys, are beginning to be used more frequently in hy-
drogeologic Investigations Table 5-4 provides summary
information on applications of surface geophysical
methods for ground water and contaminated site inves-
tigattons The most commonly used methods are in
boldface type Geophysical methods require specialized
equipment and training and require verificatton by drill-
ing of boreholes Consequently, they are relatively ex-
pensive Where detalled hydrogeologic investigations
are required for numerical computer modeling, surface
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Figure 5-2 Symbols and conventions for preparation of hydrogeologic maps (LaMoreaux, 1966)
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Figure 5-2. Symbols and conventions for preparation of hydrogeologic maps (LLaMoreaux, 1966) (continued)
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Table 5-4 Summary Information on Remote Sensing and Surface Geophysical Methods (All ratings are approximate and for
general guidance only)

Section in
Soils/ Buried US EPA
Technique Geology Leachate Wastes NAPLs Penetration Depth? Cost® (1993b)
Airborne Remote Sensing and Geophysics
Visible Photography yes yes® possibly? yes® Surf only L 111
Infrared Photography yes yes® possibly® yes® Surf only L-M 111
Muttispectral Imaging yes yes® no yes® Surf only L 111
Ultraviolet Photography yes yes® no yes® Surf only L 112
Thermal Infrared Scanning yes yes (T) possibly? possibly Surf only M 113
Active Microwave (Radar) yes possibly no possibly 012 M 114
Airborne Electromagnetics yes yes (C) yes possibly 0-100 M 115
Aeromagnetics yes no yes no ? M 116
Surface Electrical and Electromagnetic Methods
Self Potential yes yes (C) yes no s§? L 121
Electrical Resistivity yes yes (C) yes (M) possibly S 60 (km) L-M 122,911
Induced Polanization yes yes (C) yes possibly S km L-M 123
Complex Resistivity yes yes (C) yes yes S km M-H 123
Time Domain Reflectometry yes yes (C) no yes 8 2° M-H 624
Capacitance Sensors yes yes (C) no possibly S 2° L-M 624
Electromagnetic Induction yes yes (C) yes posstbly S 60(200)/C 15(50) L-M 131
Transtent Electromagnetics yes yes (C) yes no S 150 (2000+) M-H 132
Metal Detectors no no yes no C/sS 0-3 L 133
VLF Resistivity yes yes (C) yes no C/S 20-60 M-H 134
Magnetotellurics
Surface Seismic and Acoustic Methods
Seismic Refraction yes yes no no S 1-30(200+) L-M 141
Shallow Seismic Reflection yes no no no S 10-30(2000+) M-H 142
Continuous Seismic Profiling yes no no no C 1-100 L-M 143
Seismic Shear/Surface Waves yes no no no §? M-H 144
Acoustic Emission Monitoring yes no no no s2° L 145
Sonar/Fathometer yes yes no no C no himit L-H 146
Other Surface Geophysical Methods
Ground-Penetrating Radar yes yes (C) yes yes C 1-25 (100s) M 151
Magnetometry no no yes (F) no C/S 0-20° L-M 152
Gravity yes yes no no S 100s+ H 153
Radiation Detection no no yes no C/S near surface L 154
(nuclear)
Near Surface Geothermomeiry
Soil Temperature yes yes (T) no no S 1-2¢ L 161
Ground Water Detection yes yes (T) no no s2° L 162
Other Thermal Properties yes no no no S 1-2° L-M 163

Boldface = Most commonly used methods at contaminated sites

(C) = plume detected when contaminant(s) change conductivity of ground water, (F) = ferrous metals only, (T) = plume detected by temperature
rather than conductivity

2 § = station measurement; C = continuous measurement Depths are for typical shallow applications, ( ) = achievable depths
Ratings are very approximate L = low, M = moderate, H = high

° If leachate or NAPLs are on the ground or water surface or indirectly affect surface properties, field confirmation required
Disturbed areas which may contain buried waste can often be detected on aenal photographs

¢ Typical maximum depth, greater depths possible, but sensor placement is more difficult and cable lengths must be increased
For ferrous metal detection, greater depths require larger masses of metal for detection, 100s of meters depth can be sensed when using
magnetometry for mapping geologic structure

geophysical methods can reduce total costs by optimiz-  provide information that may be helpful in selecting
ing the location of drillholes for more detalled subsurface  appropriate methods Table 5-5 identifies the most com-
characterization For this situation, US EPA (1987), monly used surface geophysical methods for charac-
US EPA (1993b), and Chapter 1 of U S EPA (1993c) tenzing aquifer heterogeneity (Section 5 4 2)

97



Table 5-5 Summary of Methods for Characterizing Aquifer Heterogeneity

Method Properties Comments
Vartical Variations
Drill logs Changes n lithology Basic source for geologic cross sechons
Aquifer thickness Descriptions prepared by geologist preferred over those by
Confining bed thickness well drillers
Layers of high/low hydraulic conductivity Continuous core samples piovided more accurate
Vanations in pnmary porosity (based on descriptions
material description)
Electric logs Changes in lithology Require uncased hole and fluid-filled borehole
Changes in water quality
Strike and dip (dipmeter)
Nuclear logs Changes in hthology Suitable for all borehole condition (cased, uncased, dry, and

Acoustic and selsmic logs

Changes in porosity (gamma-gamma)

Changes in lithology

Changes in porosity

Fracture charactenzation

Strike and dip (acoustic televiewer)

Other logs Secondary porosity (caliper,
television/photography)
Variations in permeability
(fluid-temperature, flowmeters, single
borehole tracing)

Packer Tests Hydraulic conductivity

Surface gaophyslics Changes in lithology (resistvity, EMI,
TDEM, seismic refraction)

Lateral Variations

Potenlomeatric maps

Changes in hydraulic conductvity

Hydrochemical maps Changes In water chemistry

Tracer tests Time of travel between points

Geologlc maps and Changes in formation thickness

cross-sactions Structural features, fauits

Isopach maps Varnations in aquifer and confining layer
thickness

Geologle structure maps Stratigraphic and structural boundary
conditions affecting aquifers

Surface geophysics Changes in lithology (seismic)

Structural features (selsmic, GPR,
gravity)

Changes in water quality/ contaminant
plume detection (ER, EMI, GPR)

fluid-filled)
Requires uncased or steel cased hole, and fluid-filled hole

Require open, fluid-filled borehole
Relatively inexpensive and easy to use

Single packer tests used dunng drilling, double-packer tests
after hole completed

Requires use of vertical sounding methods for electrical and
electromagnetic methods

Based on interpretation of the shape and spacing of
equipotential contours

Requires careful sampling, preservation and analysis to
make sure samples are representative

Requires injection point and one or more downgradient
collection points
Essential for mapping of flow in karst

Resuit from correlation features cbserved at the surface and
in boreholes

Distinctive strata with large areal extent required

See Table 5-6

Interpretations require verification using subsurface borehole
data

8.3.3 Geologic and Geophysical Well Logs

Geologic and geophysical well logs are essential for
developing a three-dimensional picture of the subsur-
face. Chffs, road-cuts, river banks, and other areas
where vertical sections of subsurface matenals are ex-
posed at the surface provide a good starting point for
observing the character of bedrock and unconsolidated
deposits below the ground surface As noted in Section
5.2.2, the examination of well logs and records of other
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subsurface borings provides information about the sub-
surface in areas where exposures are not available
Often, additional drilling 1s required to confirm tentative
interpretations made from existing data or to fill in gaps
in coverage A hollow-stem auger with periodic or con-
tinuous core sampling with a thin-wall sampler 1s usually
the best drling method in unconsolidated matenal
where accurate stratigraphic information i1s required In
bedrock, continuous diamond coring provides samples
that allow an accurate description of changes in hthol-



ogy These samples are especially valuable for identify-
ing the presence and observing the character of frac-
tures Chapter 2 in US EPA (1993a) piovides more
detailled information about the suitability, advantages,
and disadvantages of different drilling and solids sam-
pling methods

The collection of undisturbed or minimally disturbed
subsurface samples adds to the cost of driling Drill
cuttings can be observed as they are biought to the
surface, allowing the development of less precise de-
scriptive logs of vertical changes in subsurface lithology
The main difficulty in preparing logs from cuttings 1s that
it1s hard to know the exact depth from which they came
In either situation, a trained geologist or hydrogeologist
should prepare the actual descriptive logs

Borehole geophysical logs can provide valuable addi-
tional information about subsurface geology, especially
when the dnlling method does not recover intact cores
Depending on the type or combination of logs that 1s
used, a wide variety of subsurface properties can be
charactenzed (1) identification of the type and thickness
of strata within a borehole, (2) correlation of strata be-
tween boreholes, (3) measurement of moisture content
in the vadose (unsaturated) zone, (4) measurement of
porosity and specific yield, (5) characterization of frac-
tures, (6) identification of zones of high peimeability, (7)
measurement of the direction of ground water flow, (8)
characterization of water quality

Specific logging methods may be restricted to certain
borehole conditions (e g , may require an uncased, fluid-
filled hole or a certain mimimum diameter) Chapter 3 In
US EPA (1993a) provides information on the applica-
tions, borehole requirements, advantages, and disad-
vantages of more than 40 geophysical logging
techniques Perhaps a half dozen are commonly used
in hydrogeological investigations, but many more have
potential value for particular situations Section 54 2
identifies a number of methods that are particularly use-
ful for charactenzing aquifer heterogeneity

5.3.4 Measurement of Aquifer Parameters

Section 3 3 discusses methods for field measurement of
aquifer parameters for use in analytical equations and
computer modeling for WHPA delineation Most of these
methods can also be used as part of hydrogeologic
mapping for locating aquifer boundaries and charac-
tenzation of aquifer heterogeneity (Section 54 1 and
542)

5.3.5 Ground Water Chemistry

Valuable complements to mapping physical charac-
tenistics of an aquifer include sampling ground water
from existing wells and/or new boreholes drilled during
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hydrogeologic mapping, measuring such parameters as
temperature, pH, and specific conductance, and analyz-
ing for common dissolved constituents (nitrate, sulfate,
calcium, sodium, and bicarbonate) Uses of hydro-
chemical data include

¢ Dating of ground water using fritum or carbon-14
allows estimation of how recently an aquifer has been
recharged Wells that pump recently recharged water
are more vulnerable to contamination than wells
where the water has been below the surface for hun-
dreds or thousands of years

Other chemical characteristics, such as pH and dis-
solved constituent concentrations, tend to change the
longer water s in the ground, providing another indi-
cator of how close a well 1s to a recharge zone

In karst areas, varying specific conductance of
springs Indicates that the springs are fed by different
parts of the subsurface flow system

Multiple aquifers in an area may have distinctive
chemisines In this situation, analyses of ground
water samples from wells can be used to determine
which aquifer i1s being tapped Samples with interme-
diate chemical compositions may indicate mixing of
water in a well that penetrates several aquifers

Ground water chemistry i1s a useful indicator of hetero-
geneity (Section 5 4 2) and I1s useful for assessing the
presence and degree of confinement in a aquifer (Sec-
tion 5 4 3) An important consideration in hydrochemical
mapping Is that the samples should be representative of
cond